Three Key Differences between Data Science and Statistics

woman draw a light bulb in white board

Data science’s popularity has grown in the last few years, and many have confused it with its older, more familiar relative: statistics. As someone who has worked both as a data scientist and as a statistician, I frequently encounter such confusion. This post seeks to clarify some of the key differences between them.

Before I get into their differences, though, let’s define them. Statistics as a discipline refers to the mathematical processes of collecting, organizing, analyzing, and communicating data. Within statistics, I generally define “traditional” statistics as the the statistical processes taught in introductory statistics courses like basic descriptive statistics, hypothesis testing, confidence intervals, and so on: generally what people outside of statistics, especially in the business world, think of when they hear the word “statistics.”

Data science in its most broad sense is the multi-disciplinary science of organizing, processing, and analyzing computational data to solve problems. Although they are similar, data science differs from both statistics and “traditional” statistics:

DifferenceStatistics Data Science
#1 Field of Mathematics Interdisciplinary
#2 Sampled Data Comprehensive Data
#3 Confirming Hypothesis Exploratory Hypotheses

Difference #1: Data Science Is More than a Field of Mathematics

Statistics is a field of mathematics; whereas, data science refers to more than just math. At its simplest, data science centers around the use of computational data to solve problems,[i] which means it includes the mathematics/statistics needed to break down the computational data but also the computer science and engineering thinking necessary to code those algorithms efficiently and effectively, and the business, policy, or other subject-specific “smarts” to develop strategic decision-making based on that analysis.

Thus, statistics forms a crucial component of data science, but data science includes more than just statistics. Statistics, as a field of mathematics, just includes the mathematical processes of analyzing and interpreting data; whereas, data science also includes the algorithmic problem-solving to do the analysis computationally and the art of utilizing that analysis to make decisions to meet the practical needs in the context. Statistics clearly forms a crucial part of the process of data science, but data science generally refers to the entire process of analyzing computational data. On a practical level, many data scientists do not come from a pure statistics background but from a computer science or engineering, leveraging their coding expertise to develop efficient algorithmic systems.

laptop computer on glass-top table

Difference #2: Comprehensive vs Sample Data

In statistical studies, researchers are often unable to analyze the entire population, that is the whole group they are analyzing, so instead they create a smaller, more manageable sample of individuals that they hope represents the population as a whole. Data science projects, however, often involves analyzing big, summative data, encapsulating the entire population.

 The tools of traditional statistics work well for scientific studies, where one must go out and collect data on the topic in question. Because this is generally very expensive and time-consuming, researchers can only collect data on a subset of the wider population most of the time.

Recent developments in computation, including the ability to gather, store, transfer, and process greater computational data, have expanded the type of quantitative research now possible, and data science has developed to address these new types of research. Instead of gathering a carefully chosen sample of the population based on a heavily scrutinized set of variables, many data science projects require finding meaningful insights from the myriads of data already collected about the entire population.

stack of jigsaw puzzle pieces

Difference #3: Exploratory vs Confirming  

Data scientists often seek to build models that do something with the data; whereas, statisticians through their analysis seek to learn something from the data. Data scientists thus often assess their machine learning models based on how effectively they perform a given task, like how well it optimizes a variable, determines the best course of action, correctly identifies features of an image, provides a good recommendation for the user, and so on. To do this, data scientists often compare the effectiveness or accuracy of the many models based on a chosen performance metric(s).

In traditional statistics, the questions often center around using data to understand the research topic based on the findings from a sample. Questions then center around what the sample can say about the wider population and how likely its results would represent or apply to that wider population.

In contrast, machine learning models generally do not seek to explain the research topic but to do something, which can lead to very different research strategy. Data scientists generally try to determine/produce the algorithm with the best performance (given whatever criteria they use to assess how a performance is “better”), testing many models in the process. Statisticians often employ a single model they think represents the context accurately and then draw conclusions based on it.

Thus, data science is often a form of exploratory analysis, experimenting with several models to determine the best one for a task, and statistics confirmatory analysis, seeking to confirm how reasonable it is to conclude a given hypothesis or hypotheses to be true for the wider population.

A lot of scientific research has been theory confirming: a scientist has a model or theory of the world; they design and conduct an experiment to assess this model; then use hypothesis testing to confirm or negate that model based on the results of the experiment. With changes in data availability and computing, the value of exploratory analysis, data mining, and using data to generate hypotheses has increased dramatically (Carmichael 126).

Data science as a discipline has been at the forefront of utilizing increased computing abilities to conduct exploratory work.

person holding gold-colored pocket watch

Conclusion

 A data scientist friend of mine once quipped to me that data science simply is applied computational statistics (c.f. this). There is some truth in this: the mathematics of data science work falls within statistics, since it involves collecting, analyzing, and communicating data, and, with its emphasis and utilization of computational data, would definitely be a part of computational statistics. The mathematics of data science is also very clearly applied: geared towards solving practical problems/needs. Hence, data science and statistics interrelate.

They differ, however, both in their formal definitions and practical understandings. Modern computation and big data technologies have had a major influence on data science. Within statistics, computational statistics also seeks to leverage these resources, but what has become “traditional” statistics does not (yet) incorporate these. I suspect in the next few years or decades, developments in modern computing, data science, and computational statistics will reshape what people consider “traditional” or “standard” statistics to be a bit closer to the data science of today.

   For more details, see the following useful resources:

Ian Carmichael’s and J.S. Marron’s “Data science vs. statistics: two cultures?” in the Japanese Journal of Statistics and Data Science: https://link.springer.com/article/10.1007/s42081-018-0009-3
“Data Scientists Versus Statisticians” at https://opendatascience.com/data-scientists-versus-statisticians/ and https://medium.com/odscjournal/data-scientists-versus-statisticians-8ea146b7a47f
“Differences between Data Science and Statistics” at https://www.educba.com/data-science-vs-statistics/

Photo credit #1: Andrea Piacquadio at https://www.pexels.com/photo/woman-draw-a-light-bulb-in-white-board-3758105/

Photo credit #2: Carlos Muza at https://unsplash.com/photos/hpjSkU2UYSU

Photo credit #3: Hans-Peter Gauster at https://unsplash.com/photos/3y1zF4hIPCg

Photo credit #4: Kendall Lane at https://unsplash.com/photos/yEDhhN5zP4o


[i] Carmichael 118.

2 thoughts on “Three Key Differences between Data Science and Statistics”

Hello, my thoughts are...