For my third interview in the Interview Series, I interviewed Priyanka Dass Saharia. Priyanka Dass Saharia is an anthropologist working in tech startups, mostly seed to early venture stage in their product development. These companies broadly fall under the rubric of tech-based initiatives that aim to accelerate positive social, environmental and governance change. To do this, she routinely employs a variety of qualitative and quantitative techniques. In addition to anthropology, she has also studied economics and sociology in both India, where she grew up, and the United Kingdom, where she currently resides.
Over our conversation, we discussed the following:
Priyanka’s experiences as an anthropologist in tech, including her current work in fintech
Strategies for socially and environmentally equitable entrepreneurial investment
Skills anthropologists might need when working in tech and suggestions for how to develop them
Recommendations for how anthropologists can cultivate their quantitative thinking
To learn more about Priyanka Dass Saharia, check these out:
I interviewed Olga Shiyan as part of my Interview Series. In it, she discusses her anti-corruption work in Kazakhstan with Transparency International. In particular, she highlights various projects that have integrated anthropology with data science and statistics.
Olga Shiyan is the Executive Director of the Transparency International’s chapter in Kazakhstan. She specializes in advocacy, legislation and draft laws, and democratic training programs. For this, she has developed research methods that combine anthropology and data science and statistics. In 2019, the Kazakhstan Geographic Society awarder for a medal for anti-corruption work.
To learn more about Olga, feel free to check out the following:
For Part 8 in my Interview Series, I interviewed Scarleth Herrera, a digital anthropologist and founder of Orez Anthropological Research. In it, we discuss her experiences as starting her own digital anthropology research company, transitioning into artificial intelligence-related work, and experiences conducting anthropological research outside of academia.
Scarleth lives in South Florida. Her Orez Anthropological Research is a non-profit dedicated to the exploration and advancing the research of digital anthropology. She is also a Research Scholar at the Ronin Institute in New Jersey. Her current research focus is on the implications artificial intelligence may have on society in general but particularly low-income communities, but she is also passionate about issues facing immigrant communities in the United States.
I recently organized a professional group called EPIC Data Scientists + Ethnographers along with a few others who are both data scientists and ethnographers. Our goal is to form a virtual community to discuss ways to incorporate ethnography and data science, just like I strive to do on this website.
If you are interested in working with others on this or simply interested in learning more, feel free to join. Whether you are both a data scientist and ethnographer, only one of them, or neither, we would love to hear your perspective.
Thank you, EPIC, for helping to develop this and giving us a platform.
In a previous article, I have discussed the value of integrating data science and ethnography. On LinkedIn, people commented that they were interested and wanted to hear more detail on potential ways to do this. I replied, “I have found explaining how to conduct studies that integrate the two practically is easier to demonstrate through example than abstractly since the details of how to do it vary based on the specific needs of each project.”
In this article, I intend to do exactly that: analyze four innovative projects that in some way integrated data science and ethnography. I hope these will spur your creative juices to help think through how to creatively combine them for whatever project you are working on.
Synopsis:
Project:
How It Integrated Data Science and Ethnography:
Link to Learn More:
No Show Model
Used ethnography to design machine learning software
Used ethnography to understand how users make sense of and behave towards a machine learning system they encounter and how this, in turn, shapes the development of the machine learning algorithm(s)
A medical clinic at a hospital system in New York City asked me to use machine learning to build a show rate predictor in order to inform an improve its scheduling practices. During the initial construction phase, I used ethnography to both understand in more depth understand the scheduling problem the clinic faced and determine an appropriate interface design.
Through an ethnographic inquiry, I discovered the most important question(s) schedulers ask when scheduling their appointments. This was, “Of the people scheduled for a given doctor on a particular day, how many of them are likely to actually show up?” I then built a machine learning model to answer this exact question. My ethnographic inquiry provided me the design requirements for the data science project.
In addition, I used my ethnographic inquiries to design the interface. I observed how schedulers interacted with their current scheduling software, which gave me a sense for what kind of visualizations would work or not work for my app.
This project exemplifies how ethnography can be helpful both in the development stage of a machine learning project to determine machine learning algorithm(s) needs and on the frontend when communicating the algorithm(s) to and assessing its successfulness with its users.
As both an ethnographer and a data scientist, I was able to translate my ethnographic insights seamlessly into machine learning modeling and API specifications and also conducted follow-up ethnographic inquiries to ensure that what I was building would meet their needs.
Project 2: Cybersensitivity Study
I conducted this project with Indicia Consulting. Its goal was to explore potential connections between individuals’ energy consumption and their relationship with new technology. This is an example of using ethnography to explore and determine potential social and cultural patterns in-depth with a few people and then using data science to analyze those patterns across a large population.
We started the project by observing and interviewing about thirty participants, but as the study progressed, we needed to develop a scalable method to analyze the patterns across whole communities, counties, and even states.
Ethnography is a great tool for exploring a phenomenon in-depth and for developing initial patterns, but it is resource-intensive and thus difficult to conduct on a large group of people. It is not practical for saying analyzing thousands of people. Data science, on the other hand, can easily test the validity across an entire population of patterns noticed in smaller ethnographic studies, yet because it often lacks the granularity of ethnography, would often miss intricate patterns.
Ethnography is also great on the back end for determining whether the implemented machine learning models and their resulting insights make sense on the ground. This forms a type of iterative feedback loop, where data science scales up ethnographic insights and ethnography contextualizes data science models.
Thus, ethnography and data science cover each other’s weaknesses well, forming a great methodological duo for projects centered around trying to understand customers, users, colleagues, or other users in-depth.
Project 3: Facebook Newsfeed Folk Theories
In their study, Motahhare Eslami and her team of researchers conducted an ethnographic inquiry into how various Facebook users conceived of how the Facebook Newsfeed selects which posts/stories rise to the top of their feeds. They analyze several different “folk theories” or working theories by everyday people for the criteria this machine learning system uses to select top stories.
How users think the overall system works influences how they respond to the newsfeed. Users who believe, for example, that the algorithm will prioritize the posts of friends for whom they have liked in the past will often intentionally like the posts of their closest friends and family so that they can see more of their posts.
Users’ perspectives on how the Newsfeed algorithm works influences how they respond to it, which, in turn, affects the very data the algorithm learns from and thus how the algorithm develops. This creates a cyclic feedback loop that influences the development of the machine learning algorithmic systems over time.
Their research exemplifies the importance of understanding how people think about, respond to, and more broadly relate with machine learning-based software systems. Ethnographies into people’s interactions with such systems is a crucial way to develop this understanding.
In a way, many machine learning algorithms are very social in nature: they – or at least the overall software system in which they exist – often succeed or fail based on how humans interact with them. In such cases, no matter how technically robust a machine learning algorithm is, if potential users cannot positively and productively relate to it, then it will fail.
Ethnographies into the “social life” of machine learning software systems (by which I mean how they become a part of – or in some cases fail to become a part of – individuals’ lives) helps understand how the algorithm is developing or learning and determine whether they are successful in what we intended them to do. Such ethnographies require not only in-depth expertise in ethnographic methodology but also an in-depth understanding how machine learning algorithms work to in turn understand how social behavior might be influencing their internal development.
Project 4: Thing Ethnography
Elise Giaccardi and her research team have been pioneering the utilization of data science and machine learning to understand and incorporate the perspective of things into ethnographies. With the development of the internet of things (IOT), she suggests that the data from object sensors could provide fresh insights in ethnographies of how humans relate to their environment by helping to describe how these objects relate to each other. She calls this thing ethnography.
This experimental approach exemplifies one way to use machine learning algorithms within ethnographies as social processes/interactions in of themselves. This could be an innovative way to analyze the social role of these IOT objects in daily life within ethnographic studies. If Eslami’s work exemplifies a way to graft ethnographic analysis into the design cycle of machine learning algorithms, Giaccardi’s research illustrates one way to incorporate data science and machine learning analysis into ethnographies.
Conclusion
Here are four examples of innovative projects that involve integrating data science and ethnography to meet their respective goals. I do not intend these to be the complete or exhaustive account of how to integrate these methodologies but as food for thought to spur further creative thinking into how to connect them.
For those who, when they hear the idea of integrating data science and ethnography, ask the reasonable question, “Interesting but what would that look like practically?”, here are four examples of how it could look. Hopefully, they are helpful in developing your own ideas for how to combine them in whatever project you are working on, even if its details are completely different.
I recently integrated ethnography and data science to develop a Show Rate Predictor for an (anonymous) hospital system. Many readers have asked for real-world examples of this integration, and this project demonstrates how ethnography and data science can join to build machine learning-based software that makes sense to users and meets their needs.
Part 1: Scoping out the Project
A particular clinic in the hospital system was experiencing a large number of appointment no-shows, which produced wasted time, frustration, and confusion for both its patients and employees. I was asked to use data science and machine learning to better understand and improve their scheduling.
I started the project by conducting ethnographic research into the clinic to learn more about how scheduling occurs normally, what effect it was having on the clinic, and what driving problems employees saw. In particular, I observed and interviewed scheduling assistants to understand their day-to-day work and their perspectives on no-shows.
One major lesson I learned through all this was that when scheduling an appointment, schedulers are constantly trying to determine how many people to schedule on a given doctor’s shift to ensure the right number of people show up. For example, say 12-14 patients is a good number of patients for Dr. Rodriguez’s (made up name) Wednesday morning shift. When deciding whether to schedule an appointment for the given patient with Dr. Rodriguez on an upcoming Wednesday, the scheduling assistants try to determine, given the appointments currently scheduled then, whether they can expect 12-14 patients to show up. This was often an inexact science. They would often have to schedule 20-25 patients on a particular doctor’s shift to ensure their ideal window of 12-14 patients would actually come that day. This could create the potential for chaos, however, where too many patients arriving on some days and too few on others.
This question – how many appointments can we expect or predict to occur on a given doctor’s shift – became my driving question to answer with machine learning. After checking in with the various stakeholders at the clinic to make sure this was in fact an important and useful question to answer with machine learning, I started building.
Part 2: Building the Model
Now that I had a driving, answerable question, I decided to break it down into two sequential machine learning models:
The first model learned to predict the probability that a given appointment would occur, learning from the history of occurring or no-show appointments.
The second model, using the appointment probabilities from the first model, estimated how many appointments might occur for every doctors’ shift.
The first model combined three streams of data to assess the no-show probability: appointment data (such as how long ago it was scheduled, type of appointment, etc.); patient information, especially past appointment history; and doctor information. I performed extensive feature selection to determine the best subset of variables to use and tested several types of machine learning models before settling on gradient boosting.
The second model used the probabilities in the first model as input data to predict how many patients to expect to come on each doctors’ shift. I settled on a neural network for the model.
Part 3: Building an App
Next, I worked with the software engineers on my team to develop an app to employ these models in real time and communicate the information to schedulers as they scheduled appointments. My ethnographic research was invaluable for developing how to construct the app.
On the back end, the app calculated the probability that all future appointments would occur, updating with new calculations for newly scheduled or edited appointments. Once a week, it would incorporate that week’s new appointment data and shift attendance to each model’s training data and update those models accordingly.
Through my ethnographic research, I observed how schedulers approached scheduling appointments, including what software they used in the process and how they used each. I used that to determine the best ways to communicate that information, periodically showing my ideas to the schedulers to make sure my strategy would be helpful.
I constructed an interface to communicate the information that would complement the current software they used. In addition to displaying the number of patients expected to arrive, if the machine learning algorithm was predicting that a particular shift was underbooked, it would mark the shift in green on the calendar interface; yellow if the shift was projected to have the ideal number of patients, and red if already expected have too many patients. The color-coding allowed easy visualization of the information in the moment: when trying to find an appointment time for a patient, they could easily look for the green shifts or yellow if they had to, but steer clear of the red. When zooming in on a specific shift, each appointment would be color-coded (likely, unlikely, and in the middle) as well based on the probability that it would occur.
Conclusion
This is one example of a projects that integrates data science and ethnography to build a machine learning app. I used ethnography to construct the app’s parameters and framework. It tethered the app in the needs of the schedulers, ensuring that the machine learning modeling I developed was useful to those who would use it. Frequent check-ins before each step in their development also helped confirm that my proposed concept would in fact help meet their needs.
My data science and machine learning expertise helped guide me in the ethnographic process as well. Being an expert in how machine learning worked and what sorts of questions it could answer allowed me to easily synthesize the insights from my ethnographic inquiries into buildable machine learning models. I understood what machine learning was capable (and not capable) of doing, and I could intuitively develop strategic ways to employ machine learning to address issues they were having.
Hence, my dual role as an ethnography and data scientist benefitted the project greatly. My listening skills from ethnography enabled me to uncover the underlying questions/issues schedulers faced, and my data science expertise gave me the technical skills to develop a viable machine learning solution. Without listening patiently through extensive ethnography, I would not have understood the problem sufficiently, but without my data science expertise, I would have been unable to decipher which questions(s) or issue(s) machine learning could realistically address and how.
This exemplifies why a joint expertise in data science and ethnography is invaluable in developing machine learning software. Two different individuals or teams could complete each separately – an ethnographer(s) analyze the users’ needs and a data scientist(s) then determine whether machine learning modeling could help. But this seems unnecessarily disjointed, potentially producing misunderstanding, confusion, and chaos. By adding an additional layer of people, it can easily lead to either the ethnographer(s) uncovering needs way too broad or complex for a machine learning-based solution to help or the data scientist(s) trying to impose their machine learning “solution” to a problem the users do not have.
Developing expertise in both makes it much easier to simultaneously understand the problems or questions in a particular context and build a doable data science solution.
I worked as a data scientist at a hospital in New York City during the worst of the covid-19 pandemic. Over the spring and summer, we became overwhelmed as the city turned into (and left) the global hotspot for covid-19. I have been processing everything that happened since.
The pandemic overwhelmed the entire hospital, particularly my physician colleagues. When I met with them, I could often notice the combined effects of physical and emotional exhaustion in their eyes and voices. Many had just arrived from the ICU, where they had spent several hours fighting to keep their patients alive only to witness many of them die in front of them, and I could sense the emotional toll that was taking.
My experiences of the pandemic as a data scientist differed considerably yet were also exhausting and disturbing in their own way. I spent several months day-in and day-out researching how many of our patients were dying from the pandemic and why: trying to determine what factors contributed to their deaths and what we could do as a hospital to best keep people alive. The patient who died the night before in front of the doctor I am currently meeting with became, for me, one a single row in an already way-too-large data table of covid-19 fatalities.
I felt like a helicopter pilot overlooking an out-of-control wildfire.[1] In such wildfires, teams of firefighters (aka doctors) position themselves at various strategic locations on the ground to push back the fire there as best they can. They experience the flames and carnage up close and personal. My placement in the helicopter, on the other hand, removes me from ground zero, instead forcing me to see and analyze the fire in its entirety and its sweeping and massive destruction across the whole forest. My vantage point provides a strategic vantage point to determine the best ways to fight it, shielding me from the immediate destruction. Nevertheless, witnessing the vastness of the carnage from the air had its own challenges, stress, and emotional toll.
Being an anthropologist by training, I am accustomed to being “on the ground.” Anthropology is predicated on the idea that to understand a culture or phenomena, one must understand the everyday experiences of those on the ground amidst it, and my anthropological training has instilled an instinct to go straight to and talk to those in the thick of it.
Yet, this experience has taught me that that perception is overly simplistic: the so-called “ground” has many layers to it, especially for a complex phenomenon like a pandemic. Being in the helicopter is another way to be in the thick of it just as much as standing before the flames.
Many in the United States have made considerable and commendable efforts to support frontline health workers. Yet, as the pandemic progresses, and its societal effects grow in complexity in the coming months I think we need to broaden our understanding of where the “frontlines” are and who a “frontline worker” is worthy of our support.
In actual battlefields where the “frontline” metaphor comes from, militaries also set up layered teams to support the logistical needs of ground soldiers who also must frequently put themselves in harm’s way in the process. The frontline of this pandemic seems no different.
I think we need to expand our conceptions of what it means to be on the frontlines accordingly. Like anthropology, modern journalism, a key source of pandemic information for many of us, can fall into the issue of overfocusing on the “worst of the worst,” potentially ignoring the broader picture and the diversity of “frontline” experiences. For example, interviewing the busiest medical caregivers in the worst affected hospitals in the most affected places in the world likely does promote viewership, but only telling those stories ignores the experiences and sacrifices of thousands of others necessary to keep them going.
To be clear, in this blog, I do not personally care about acknowledgement of my own work nor do I think we should ignore the contributions of these medical professional “ground troops” in any way. Rather, in the spirt of “yes and,” we should extend our understanding of the “frontline workers” to acknowledge and celebrate the contributions of many other essential professionals during this crisis, such as transportation services, food distribution, postal workers, etc. I related my own experiences as a data scientist because they helped me learn this, not for any desire for recognition.
This might help us appreciate the complexity of this crisis and its social effects, and the various types of sacrifices people have been making to address it. As it is becoming increasingly clear that this pandemic is not likely to go anywhere anytime soon, appreciating the full extent of both could help us come together to buckle down and fight it.
[1] This video helped me understand the logistics of fighting wildfires, a fascinating topic in itself: https://www.youtube.com/watch?v=EodxubsO8EI. Feel free to check it out to understand my analogy in more depth.
This is a follow-up to my previous article, “What Is Ethnography,” outlining ways ethnography is useful in professional settings.
To recap, I defined ethnography as a research approach that seeks “to understand the lived experiences of a particular culture, setting, group, or other context by some combination of being with those in that context (also called participant-observation), interviewing or talking with them, and analyzing what is produced in that context.”
Ethnography is a powerful tool, developed by anthropologists and other social scientists over the course of several decades. Here are three types of situations in professional settings when I have found to use ethnography to be especially powerful:
1. To see the given product and/or people in action
2. When brainstorming about a design
3. To understand how people navigate complex, patchwork processes
Situation
#1: To See the Given Product and/or People in Action
Ethnography allows you to witness people in action: using your product or service, engaging in the type of activity you are interested, or in whatever other situation you are interested in studying.
Many other social science research methods involve creating an artificial environment in which to observe how participants act or think in. Focus groups, for example, involve assembling potential customers or users into a room: forming a synthetic space to discuss the product or service in question, and in many experimental settings, researchers create a simulated environment to control for and analyze the variables or factors they are interested in.
Ethnography, on the other hand, centers around observing and understanding how people navigate real-world settings. Through it, you can get a sense for how people conduct the activity for which you are designing a product or service and/or how people actually use your product or service.
For example, if you want to understand how people use GPS apps to get around, one can see how people use the app “in the wild:” when rushing through heavy traffic to get to a meeting or while lost in the middle of who knows where. Instead of hearing their processed thoughts in a focus group setting or trying to simulate the environment, you can witness what the tumultuousness yourself and develop a sense for how to build a product that helps people in those exact situations.
Situation
#2: When Brainstorming about a New Product Design
Ethnography is especially useful during the early stages of designing a product or service, or during a major redesign. Ethnography helps you scope out the needs of your potential customers and how they approach meeting said needs. Thus, it helps you determine how to build a product or service that addresses those needs in a way that would make sense for your users.
During such initial stages of product design, ethnography helps determine the questions you should be asking. Many have a tendency during these initial stages to construct designs based on their own perception of people’s needs and desires and miss what the customers’ or users’ do in fact need and desire. Through ethnography, you ground your strategy in the customers’ mindsets and experiences themselves.
The brainstorming stages of product development also require a lot of flexibility and adaptability: As one determines what the product or service should become, one must be open to multiple potential avenues. Ethnography is a powerful tool for navigating such ambiguity. It centers you on the users, their experiences and mindsets, and the context which they might use the product or service, providing tools to ask open-ended questions and to generate new and helpful ideas for what to build.
Situation
#3: To Understand How People Navigate Complex, Patchwork Processes
At a past company, I analyzed how customer service representatives regularly used the various software systems when talking with customers. Over the years, the company had designed and bought various software programs, each to perform a set of functions and with unique abilities, limitations, and quirks. Overtime, this created a complex web of interlocking apps, databases, and interfaces, which customer service representatives had to navigate when performing their job of monitoring customer’s accounts. Other employees described the whole scene as the “Wild West:” each customer service representative had to create their own way to use these software systems while on the phone with a (in many cases disgruntled) customer.
Many companies end up building such patchwork systems – whether of software, of departments or teams, of physical infrastructure, or something else entirely – built by stacking several iterations of development overtime until, they become a hydra of complexity that employees must figure out how to navigate to get their work done.
Ethnography is a powerful tool for making sense of such processes. Instead of relying on official policies for how to conduct various actions and procedures, ethnography helps you understand and make sense of the unofficial and informal strategies people use to do what they need. Through this, you can get a sense for how the patchwork system really works. This is necessary for developing ways to improve or build open such patchwork processes.
In the customer service research project, my task was
to develop strategies to improve the technology customer service representatives
used as they talked with customers. Seeing how representatives used the
software through ethnographic research helped me understand and focus the analysis
on their day-to-day needs and struggles.
Conclusion
Ethnography is a powerful tool, and the business world and other professional settings have been increasingly realizing this (c.f. this and this ). I have provided three circumstances where I have personally found ethnography to be invaluable. Ethnography allows you to experience what is happening on the ground and through that to shape and inform the research questions we ask and recommendations or products we build for people in those contexts.