In a past blog post, I defined and described what machine learning is. I briefly highlighted four instances where machine learning algorithms are useful. This is what I wrote:
- Autonomy: To teach computers to do a task without the direct aid/intervention of humans (e.g. autonomous vehicles)
- Fluctuation: Help machines adjust when the requirements and data change over time
- Intuitive Processing: Conduct or assist in tasks humans do but are unable to explain how computationally/algorithmically (e.g. image recognition)
- Big Data: Breaking down data that is too large to handle otherwise
The goal of this blog post is to explain each in more detail.
Case #1: Autonomy
The first major use of machine learning centers around teaching computers to do a task or tasks without the direct aid or intervention of humans. Self-driving vehicles are a high-profile example of this: teaching a vehicle to drive (scanning the road and determining how to respond to what is around it) without the aid of or with minimal direct oversight from a human driver.
There are two types basic types of tasks that machine learning systems might perform autonomously:
- Tasks humans frequently perform
- Tasks humans are unable to perform.
Self-driving cars exemplify the former: humans drive cars, but self-driving cars would perform all or part of the driving process. Another example would be chatbots and virtual assistants like Alexa, Cortana, and Ok Google, which seek to converse with users independently. Such tasks might completely or partially complete the human activity: for example, some customer service chatbots are designed to determine the customer’s issue but then to transfer to a human when the issue has a certain complexity.
Humans have also sought to build autonomous machine learning algorithms to perform tasks that humans are unable to perform. Unlike self-driving cars, which conduct an activity many people do, people might also design a self-driving rover or submarine to drive and operate in a world that humans have so far been unable to inhabit, like other planets in our Solar System or the deep ocean. Search engines are another example: Google uses machine learning to help refine search results, which involves analyzing a massive amount of web data beyond what a human could normally do.
Case #2: Fluctuating Data
Machine learning is also powerful tool for making sense of and incorporating fluctuating data. Unlike other types of models with fixed processes for how it predicts its values, machine learning models can learn from current patterns and adjust both if the patterns fluctuate overtime or if new use cases arise. This can be especially helpful when trying to forecast the future, allowing the model to decipher new trends if and when they emerge. For example, when predicting stock prices, machine learning algorithms can learn from new data and pick up changing trends to make the model better at predicting the future.
Of course, humans are notorious for changing overtime, so fluctuation is often helpful in models that seek to understand human preferences and behavior. For example, user recommendations – like Netflix’s, Hulu’s, or YouTube’s video recommendation systems – adjust based on the usage overtime, enabling them to respond to individual and/or collective changes in interests.
Case #3: Intuitive Processing
Data scientist frequently develop machine learning algorithms to teach computers how to do processes that humans do naturally but for which we are unable to fully explain how computationally. For example, popular applications of machine learning center around replicating some aspect of sensory perception: image recognition, sound or speech recognition, etc. These replicate the process of inputting sensory information (e.g. sight and sound) and processing, classifying, and otherwise making sense of that information. Language processing, like chatbots, form another example of this. In these contexts, machine learning algorithms learn a process that humans can do intuitively (see or hear stimuli and understand language) but are unable to fully explain how or why.
Many early forms of machine learning arose out of neurological models of how human brains work. The initial intention of neural nets, for instance, were to model our neurological decision-making process or processes. Now, much contemporary neurological scholarship since has disproven the accuracy of neural nets in representing how our brains and minds work.[i] But, whether they represent how human minds work at all, neural networks have provided a powerful technique for computers to use to process and classify information and make decisions. Likewise, many machine learning algorithms replicate some activity humans do naturally, even if the way they conduct that human task has little to do with how humans would.
Case #4: Big Data
Machine learning is a powerful tool when analyzing data that is too large to break down through conventional computational techniques. Recent computer technologies have increased the possibility of data collection, storage, and processing, a major driver in big data. Machine learning has arisen as a major, if not the major, means of analyzing this big data.
Machine learning algorithms can manage a dizzying array of variables and use them to find insightful patterns (like lasso regression for linear modeling). Many big data cases involve hundreds, thousands, and maybe even tens or hundreds of thousands of input variables, and many machine learning techniques (like best subsets selection, stepwise selection, and lasso regression) process the myriads of variables in big data and determine the best ones to use.
Recent developments computing provides the incredible processing power necessary to do such work (and debatably, machine learning is currently helping to push computational power and provide a demand for greater computational abilities). Hand-calculations and computers several decades ago were often unable to handle the calculations necessary to analyze large information: demonstrated, for example, by the fact that computer scientists invented the now popular neural networks many decades ago, but they did not gain popularity as a method until recent computer processing made them easy and worthwhile to run.
Tractors and other large-scale agricultural techniques coincided historically with the enlargement of farm property sizes, where the such machinery not only allowed farmers to manage large tracks of land but also incentivized larger farms economically. Likewise, machine learning algorithms provide the main technological means to analyze big data, both enabling and in turn incentivized by rise of big data in the professional world.
Conclusion
Here I have described four major uses of machine learning algorithms. Machine learning has become popular in many industries because of at least one of these functionalities, but of course, they are not the only potential current uses. In addition, as we develop machine learning tools, we are constantly inventing more. Given machine learning’s newness compared to many other century-old technologies, time will tell all the ways humans utilize it.
Photo credit #1: Mike MacKenzie at https://www.flickr.com/photos/mikemacmarketing/30212411048/
Photo credit #2: julientromeur at https://pixabay.com/illustrations/car-automobile-3d-self-driving-4343635/
Photo credit #3: geralt at https://pixabay.com/illustrations/business-success-curve-hand-draw-1989130/
Photo credit #4: geralt at https://pixabay.com/illustrations/flat-recognition-facial-face-woman-3252983/
Photo credit #5: mohamed_hassan at https://pixabay.com/illustrations/technology-5g-aerial-4816658/
[i] See Richard, Nagyfi. The differences between Artificial and Biological Neural Networks. 4 September 2018. https://towardsdatascience.com/the-differences-between-artificial-and-biological-neural-networks-a8b46db828b7; and Tcheang, Lili. Are Artificial Neural Networks like the Human Brain? And does it matter? 7 November 2018. https://medium.com/digital-catapult/are-artificial-neural-networks-like-the-human-brain-and-does-it-matter-3add0f029273.
One thought on “When Is Machine Learning Useful?”