Data Science and the Myth of the “Math Person”

woman holding books

“Data science is doable,” a fellow attendee of the EPIC’s 2018 conference in Honolulu would exclaim like a mantra. The conference was for business ethnographers and UX researchers interested in understanding and integrating data science and machine learning into their research. She was specifically trying to address a tendency she has noticed– which I have seen as well: qualitative researchers and other so-called “non-math people” frequently believe that data science is far too technical for them. This seems ultimately rooted in cultural myths about math and math-related fields like computer science, engineering, and now data science, and in a similar vein as her statement, my goal in this essay is to discuss these attitudes and show that data science, like math, is relatable and doable if you treat it as such.

The “Math Person”

In the United States, many possess an implied image of a “math person:” a person supposedly naturally gifted at mathematics. And many who do not see themselves as fitting that image simply decry that math simply isn’t for them. The idea that some people are inherently able and unable to do math is false, however, and prevents people from trying to become good at the discipline, even if they might enjoy and/or excel at it.

Most skills in life, including mathematical skills, are like muscles: you do not innately possess or lack that skill, but rather your skill develops as you practice and refine that activity. Anybody can develop a skill if they practice it enough.  

Scholars in anthropology, sociology, psychology, and education have documented how math is implicitly and explicitly portrayed as something some people can do and some cannot do, especially in math classes in grade school. Starting in early childhood, we implicitly and sometimes explicitly learn the idea that some people are naturally gifted at math but for others, math is simply not their thing. Some internalize that they are gifted at math and thus take the time to practice enough to develop and refine their mathematical skills; while others internalize that they cannot do math and thus their mathematical abilities become stagnant. But this is simply not true.

Anyone can learn and do math if he or she practices math and cultivates mathematical thinking. If you do not cultivate your math muscle, then well it will become underdeveloped and, then, yes, math becomes harder to do. Thus, as a cruel irony someone internalizing that he or she cannot do math can turn into a self-fulfilling prophecy: he or she gives up on developing mathematical skills, which leads to its further underdevelopment.

Similarly, we cultivate another false myth that people skilled in mathematics (or math-related fields like computer science, engineering, and data science) in general do not possess strong social and interpersonal communication skills. The root for this stereotype lies in how we think of mathematical and logical thinking than actual characteristics of mathematicians, computer scientists, or engineers. Social scientists who have studied the social skills of mathematicians, computer scientists, and engineers have found no discernable difference in social and interpersonal communication skills with the rest of the world.  

Quantitative and Qualitative Specialties

Anyone can learn and do math if he or she practices math and cultivates mathematical thinking.

The belief that some people are just inherently good at math and that such people do not possess strong social and interpersonal communication skills contributes to the division between quantitative and qualitative social research, in both academic and professional contexts. These attitudes help cultivate the false idea that quantitative research and qualitative research are distinct skill sets for different types of people: that supposedly quantitative research can only be done “math people” and qualitative research by “people people.” They suddenly become separate specialties, even though social research by its very nature involves both. Such a split unnecessarily stifles authentic and holistic understanding of people and society.

In professional and business research contexts, both qualitative and quantitative researchers should work with each other and eventually through that process, slowly learn each other’s skills. If done well, this would incentivize researchers to cultivate both mathematical/quantitative, and interpersonal/qualitative research skills.

It would reward professional researchers who develop both skillsets and leverage them in their research, instead of encouraging researchers to specialize in one or the other. It could also encourage universities to require in-depth training of both to train their students to become future workers, instead of requiring that students choose among disciplines that promote one track over the other.

Working together is only the first step, however, whose success hinges on whether it ultimately leads to the integration of these supposedly separate skillsets. Frequently, when qualitative and quantitative research teams work together, they work mostly independently – qualitative researchers on the qualitative aspect of the project and quantitative researchers on the quantitative aspects of the project – thus reinforcing the supposed distinction between them. Instead, such collaboration should involve qualitative researchers developing quantitative research skills by practicing such methods and quantitative researchers similarly developing qualitative skills.

Conclusion

Anyone can develop mathematics and data science skills if they practice at it. The same goes with the interpersonal skills necessary for ethnographic and other qualitative research. Depicting them as separate specialties – even if they come together to do each of their specialized parts in a single research projects – functions stifles their integration as a singular set of tools for an individual and reinforces the false myths we have been teaching ourselves that data science is for math, programming, or engineering people and that ethnography is for “people people.” This separation stifles holistic and authentic social research, which inevitably involves qualitative and quantitative approaches.

Photo credit #1: Andrea Piacquadio at https://www.pexels.com/photo/woman-holding-books-3768126/

Photo credit #2: Antoine Dautry at https://unsplash.com/photos/_zsL306fDck

Photo credit #3: Mike Lawrence at https://www.flickr.com/photos/157270154@N05/28172146158/ and http://www.creditdebitpro.com/

Photo credit #4: Ryan Jacobson at https://unsplash.com/photos/rOYhgmDIOg8

Hello, my thoughts are...