This is a follow-up to my previous article, “What Is Ethnography,” outlining ways ethnography is useful in professional settings.
To recap, I defined ethnography as a research approach that seeks “to understand the lived experiences of a particular culture, setting, group, or other context by some combination of being with those in that context (also called participant-observation), interviewing or talking with them, and analyzing what is produced in that context.”
Ethnography is a powerful tool, developed by anthropologists and other social scientists over the course of several decades. Here are three types of situations in professional settings when I have found to use ethnography to be especially powerful:
1. To see the given product and/or people in action
2. When brainstorming about a design
3. To understand how people navigate complex, patchwork processes
Situation
#1: To See the Given Product and/or People in Action
Ethnography allows you to witness people in action: using your product or service, engaging in the type of activity you are interested, or in whatever other situation you are interested in studying.
Many other social science research methods involve creating an artificial environment in which to observe how participants act or think in. Focus groups, for example, involve assembling potential customers or users into a room: forming a synthetic space to discuss the product or service in question, and in many experimental settings, researchers create a simulated environment to control for and analyze the variables or factors they are interested in.
Ethnography, on the other hand, centers around observing and understanding how people navigate real-world settings. Through it, you can get a sense for how people conduct the activity for which you are designing a product or service and/or how people actually use your product or service.
For example, if you want to understand how people use GPS apps to get around, one can see how people use the app “in the wild:” when rushing through heavy traffic to get to a meeting or while lost in the middle of who knows where. Instead of hearing their processed thoughts in a focus group setting or trying to simulate the environment, you can witness what the tumultuousness yourself and develop a sense for how to build a product that helps people in those exact situations.
Situation
#2: When Brainstorming about a New Product Design
Ethnography is especially useful during the early stages of designing a product or service, or during a major redesign. Ethnography helps you scope out the needs of your potential customers and how they approach meeting said needs. Thus, it helps you determine how to build a product or service that addresses those needs in a way that would make sense for your users.
During such initial stages of product design, ethnography helps determine the questions you should be asking. Many have a tendency during these initial stages to construct designs based on their own perception of people’s needs and desires and miss what the customers’ or users’ do in fact need and desire. Through ethnography, you ground your strategy in the customers’ mindsets and experiences themselves.
The brainstorming stages of product development also require a lot of flexibility and adaptability: As one determines what the product or service should become, one must be open to multiple potential avenues. Ethnography is a powerful tool for navigating such ambiguity. It centers you on the users, their experiences and mindsets, and the context which they might use the product or service, providing tools to ask open-ended questions and to generate new and helpful ideas for what to build.
Situation
#3: To Understand How People Navigate Complex, Patchwork Processes
At a past company, I analyzed how customer service representatives regularly used the various software systems when talking with customers. Over the years, the company had designed and bought various software programs, each to perform a set of functions and with unique abilities, limitations, and quirks. Overtime, this created a complex web of interlocking apps, databases, and interfaces, which customer service representatives had to navigate when performing their job of monitoring customer’s accounts. Other employees described the whole scene as the “Wild West:” each customer service representative had to create their own way to use these software systems while on the phone with a (in many cases disgruntled) customer.
Many companies end up building such patchwork systems – whether of software, of departments or teams, of physical infrastructure, or something else entirely – built by stacking several iterations of development overtime until, they become a hydra of complexity that employees must figure out how to navigate to get their work done.
Ethnography is a powerful tool for making sense of such processes. Instead of relying on official policies for how to conduct various actions and procedures, ethnography helps you understand and make sense of the unofficial and informal strategies people use to do what they need. Through this, you can get a sense for how the patchwork system really works. This is necessary for developing ways to improve or build open such patchwork processes.
In the customer service research project, my task was
to develop strategies to improve the technology customer service representatives
used as they talked with customers. Seeing how representatives used the
software through ethnographic research helped me understand and focus the analysis
on their day-to-day needs and struggles.
Conclusion
Ethnography is a powerful tool, and the business world and other professional settings have been increasingly realizing this (c.f. this and this ). I have provided three circumstances where I have personally found ethnography to be invaluable. Ethnography allows you to experience what is happening on the ground and through that to shape and inform the research questions we ask and recommendations or products we build for people in those contexts.
I wrote this essay for my midterm for a course I took on conducting program evaluation as an anthropologist taught by Dr. Michael Duke at the University of Memphis Anthropology Master’s program. In it, I synthesize Donna Mertens’s discussion of employing mixed methods research for program evaluation work in her book, Mixed Methods Design in Evaluation, as a way to present the need for what I call methodological complementarianism.
Methodological complementarianism involves complementing those on the team one is working with by advancing for the complementary perspectives that the team needs. When conducting transdisciplinary work as applied anthropologists, instead of explicitly or implicitly seeking to maintain a “pure” anthropological approach, I think we should have a greater willingness to produce something anew in that environment, even if it no longer fits the “pure” boundaries of proper anthropology or ethnography but rather some kind of hybrid emerging out of the needs of the situation. Methodological complementarianism is one practical way to do that I have been exploring.
What is ethnography, and how has it been used in the professional world? This article is a quick and dirty crash course for someone who has never heard of (or knows little about) ethnography.
Anthropology
at its most basic is the study of human cultures and societies. Cultural anthropologists generally seek
to understand current cultures and societies by conducting ethnography.
In short, ethnography involves seeking to understand the lived experiences of a particular culture, setting, group, or other context by some combination of being with those in that context (called participant-observation), interviewing or talking with them, and analyzing what happens and what is produced in that context.
It is an umbrella term for a set of methods (including participant-observation, interviews, group interviews or focus groups, digital recording, etc.) employed with that goal, and most ethnographic projects use some subset of these methods given the needs of the specific project. In this sense, it is similar to other umbrella methodologies – like statistics – in that it encapsulates a wide array of different techniques depending on the context.
One conducts ethnographic research to understand something about the lived experiences of a context. In the professional world, for example, ethnography is frequently useful in the following contexts:
Market Research: When trying to understand customers and/or users in-depth
Product Design: When trying to design or modify a product by seeing how people use it in action
Organizational Communication and Development: When trying to understand a “people problem” within an organization.
In this article, I expound in more detail on situations where ethnographic research is useful in in professional settings.
Ethnographies are best understood through examples, so the table below include excellent example ethnographies and ethnographic researchers in various industries/fields:
These, of course, are not the only some situations where ethnography might be helpful. Ethnography is a powerful tool to develop a deep understanding of others’ experiences and to develop innovative and strategic insights.
I am pleased to announce that the Annals of Anthropological Practice has accepted my article “Anthropology by Data Science.” https://anthrosource.onlinelibrary.wiley.com/doi/10.1111/napa.12169. In it, I reflect on the relationship anthropologist have cultivated with data science as a discipline and the importance of integrating machine learning techniques into ethnographic practice.
This is a quick and dirty summary of my master’s practicum research project with Indicia Consulting over the summer of 2018. For anyone interested in more detail, here is a more detailed report, and here is the final report with Indicia.
Background
My practicum was the sixth stage of a several year-long research project. The California Energy Commission commissioned this larger project to understand the potential relationship between individual energy consumption and technology usage. In stages one through five, we isolated certain clusters of behavior and attitudes around new technology adoption – which Indicia called cybersensitivity – and demonstrated that cybersensitivity tended to associate with a willingness to adopt energy-saving technology like smart meters.
This led to a key question: How can one identify cybersensivity among a broader population such as a community, county, or state? Answering this question was the main goal of my practicum project.
In the past stages of the research project, the team used ethnographic research to establish criteria for whether someone was a cybersensitive based on several hours of interviews and observations about their technology usage. These interviews and observations certainly helped the research team analyze behavioral and attitudinal patterns, determine what patterns were significant, and develop those into the concept of cybersensitivity, but they are too time- and resource-intensive to perform with an entire population. One generally does not have the ability to interview everyone in a community, county, or state. I sought to address this directly in my project.
Task
Timeline
Task Name
Research Technique
Description
Task 1
June 2015-Sept 2018
General Project Tasks
Administrative (N/A)
Developed project scope and timeline, adjusting as the project unfolds
Task 2
July 2015 – July 2016
Documenting and analyzing emerging attitudes, emotions, experiences, habits, and practices around technology adoption
Survey
Conducted survey research to observe patterns of attitudes and behaviors among cybersensitives/awares.
Task 3
Sept 2016 – Dec 2016
Identifying the attributes and characteristics and psychological drivers of cybersensitives
Interviews and Participant-Observation
Conducted in-depth interviews and observations coding for psych factor, energy consumption attitudes and behaviors, and technological device purchasing/usage.
Task 4*
Sept 2016 – July 2017
Assessing cybersensitives’ valence with technology
Statistical Analysis
Tested for statistically significant differences in demographics, behaviors, and beliefs/attitudes between cyber status groups
Task 5
Aug 2017 – Dec 2018
Developing critical insights for supporting residential engagement in energy efficient behaviors
Statistical Analysis
Analyzed utility data patterns of study participants, comparing it with the general population.
Task 6
March 2018 – Aug 2018
Recommending an alternative energy efficiency potential model
Decision Tree Modeling
Constructed decision tree models to classify an individual’s cyber status
Project Goal
The overall goal for the project was to produce a scalable method to assess whether someone exhibits cybersensitivity based on data measurable across an entire population. In doing this, the project also helped address the following research needs:
Created a method to further to scale across a larger population, assessing whether cybersensitives were more willing to adopt energy saving technologies across a community, county, or state
Provided the infrastructure to determine how much promoting energy-saving campaigns targeting cybersensitives specifically would reduce energy consumption in California
Helped the California Energy Commission determine the best means to reach cybersensitives for specific energy-saving campaigns
The Project
I used machine learning modeling to create a decision-making flow to isolate cybersensitives in a population. Random forests and decision trees produced the best models for Indicia’s needs: random forests in accuracy and robustness and decision trees in human decipherability. Through them, I created a programmable yet human-comprehensible framework to determine whether an individual is cybersensitive based on behaviors and other characteristics that an organization could be easily assess within a whole population. Thus, any energy organization could easily understand, replicate, and further develop the model since it was both easy for humans to read and encodable computationally. This way organizations could both use and refine it for their purposes.
Conclusion
This is a quick overview of my master’s practicum project. For more details on what modeling I did, how I did it, what results it produced, and how it fit within the wider needs of the multi-year research project, please see my full report.
I really appreciated the opportunity it posed to get my hands dirty integrating ethnography and data science to help address a real-world problem. This summary only scratches the surface of what Indicia did with the Californian Energy Commission to encourage sustainable energy usage societally. Hopefully, though, it will inspire you to integrate ethnography and data science to address whatever complex questions you face. It certainly did for me.
Thank you to Susan Mazur-Stommen and Haley Gilbert for your help in organizing and completing the project. I would like to thank my professorial committee at the University of Memphis – Dr. Keri Brondo, Dr. Ted Maclin, Dr. Deepak Venugopal, and Dr. Katherine Hicks – for their academic support as well.
In the spring of 2018, I researched how anthropologists and related social scholars have analyzed data science and machine learning for my Master’s in Anthropology at the University of Memphis. For the project, I assessed the anthropological literature on data science and machine learning to date and explore potential connections between anthropology and data science, based on my perspective as a data scientist and anthropologist. Here is my final report.
Thank you, Dr. Ted Maclin, for your help overseeing and assisting this project.
On May 21st, Astrid Countee and I presented at the 2021 Response-ability Conference. We discussed strategies for leveraging data science and anthropology in the tech sector to help address societal issues. The Response-ability’s overall goal was to explore how anthropologists and software specialists in the tech sector to understand and tackle social issues.
In the coming months, Response-ability plans to publish our presentation, so if you are interested in watching it, please stay tuned until then. When they make the videos accessible, they should post them here: https://response-ability.tech/2021-summit-videos/.
I appreciated the whole experience. Thank you to everyone who helped make the conference happen, and Astrid for doing this talk with me.
This is my practicum report with Indicia Consulting. In lieu of a master’s thesis, the University of Memphis Department of Anthropology required that we master’s students conduct a practicum project. For this, we had to partner with an organization and complete a 300+ hour anthropological research project based on the organization’s needs and our skills and interests. My practicum project was Indicia’s EPIC Project with the California Energy Commission (see this link and this link for more details on the EPIC Project). In this report, I outline potential ways to integrate ethnographic/anthropological and data science research in professional settings.
In November 2019, the American Anthropological Association’s Committee for the Anthropology of Science, Technology, and Computing (CASTAC) awarded me the David Hakken Graduate Student Prize for innovative science and technology scholarship.
The Anthropology Department also required that you publicly present your practicum research to the University of Memphis campus. This PowerPoint summarizes my practicum project. If you are not keen to read the 99 page full report, this is a much shorter alternative: