In this second part of my interview with Randy Au, he discusses the techniques he used to teach himself to code and his approach to programming and data science as a social scientist.
Prior to joining Google, he spent a decade as a mixture of a data analyst, data scientist, and data engineer at various startups in New York City and before that, studied Communications. In his newsletter, he discusses data science topics like data collection and data quality from a social science perspective. Outside of work he often engages in far too many hobbies, taken to absurd lengths.
Click here to learn more about the Interview Series this is a part of.
Randy Au, a Quantitative UX Researcher at Google, explains how he leverages his backgrounds in communication, statistics, and programming as a quantitative UX researcher in Google Cloud to analyze and improve Cloud Storage products.
Prior to joining Google, he spent a decade as a mixture of a data analyst, data scientist, and data engineer at various startups in New York City and before that, studied Communications. In his newsletter, he discusses data science topics like data collection and data quality from a social science perspective. Outside of work he often engages in far too many hobbies, taken to an absurd lengths.
Click here to learn more about the Interview Series.
How do we build relatable machine learning models that regular people can understand? This is a presentation about how design principles apply to the development of machine learning systems. Too often in data science, machine learning software is not built with regular people who will interact with it in mind.
I argue that in order to make machine learning software relatable, we need to use design thinking to intentionally build in mechanisms for users to form their own mental models of how the machine learning software works. Failing to include theses helps cultivate the common sense that machine learning is a black box for users.
I gave three different versions of this talk at Quant UX Con on June 8th, 2022, the Royal Institute of Anthropology’s annual conference on June 10th, 2022, and Google’s AI + Design Tooling Research Symposium on August 5th, 2022.
I hope you find it interesting and feel free to share any thoughts you might have.
Thank you for the conference and talk organizers for making this happen, and I appreciate all the insightful conversations I had about the role of design thinking in building relatable machine learning.
During the final part of our conversation, Clayton discusses his journey from game design to data science, including what inspired them to study data science and what it has been like learning and working in this new field. Clayton Sisson is a game designer and aspiring data scientist, passionate about how data science can shed light on human behavior.
This is the next installment in my Interview Series. During Over the course of the three parts of our conversation, we discuss how game design thinking can help develop usable and useful machine learning products within data science.
In Part 2, we discuss how to apply the design concept shikake to machine learning systems. Clayton Sisson is a game designer and aspiring data scientist, passionate about how data science can shed light on human behavior.
This is the next installment in my Interview Series. During Over the course of the three parts of our conversation, we discuss how game design thinking can help develop usable and useful machine learning products within data science.
I interviewed Anna Wu, a UX researcher and data scientist overseeing Google Cloud’s Compute Engine. In this final part of the conversation, we discuss how design thinking may useful within data science and machine learning.
Here is the first interview if you would like to start from scratch, and here is more information about Interview Series that this is a part of.
Anna Wu, established leader in building and leading high-performing data teams to drive changes impacting hundreds of millions of users. Currently as a research manager at Google, she leads a team of quantitative UX researchers applying UX methods and large scale analytics to inform Cloud product development.
Before this recent chapter, Anna had 10+ years practicing UX and data science at top IT companies and research labs as a UX researcher, data scientist, research scientist at Microsoft, IBM Research and Palo Alto Research Center. She got her PhD in HCI from Penn State and master/bachelor degrees from Tsinghua University.
I interviewed Anna Wu, a UX researcher and data scientist overseeing Google Cloud’s Compute Engine, as the next installment of my Interview Series,. In this first part of our conversatoin, she discusses her journey from mechanical engineering into UX research and data science and the importance of effective storytelling within these two fields.
Anna Wu, established leader in building and leading high-performing data teams to drive changes impacting hundreds of millions of users. Currently as a research manager at Google, she leads a team of quantitative UX researchers applying UX methods and large scale analytics to inform Cloud product development.
Before this recent chapter, Anna had 10+ years practicing UX and data science at top IT companies and research labs as a UX researcher, data scientist, research scientist at Microsoft, IBM Research and Palo Alto Research Center. She got her PhD in HCI from Penn State and master/bachelor degrees from Tsinghua University.
Anna Wu, established leader in building and leading high-performing data teams to drive changes impacting hundreds of millions of users. Currently as a research manager at Google, she leads a team of quantitative UX researchers applying UX methods and large scale analytics to inform Cloud product development.
Before this recent chapter, Anna had 10+ years practicing UX and data science at top IT companies and research labs as a UX researcher, data scientist, research scientist at Microsoft, IBM Research and Palo Alto Research Center. She got her PhD in HCI from Penn State and master/bachelor degrees from Tsinghua University.
Clayton Sisson is a game designer and aspiring data scientist, passionate about how data science can shed light on human behavior. For the next installment of my Interview Series, we discuss ways to use game design and UX design to develop usable and useful machine learning products and their experiences transitioning from design into data science. In this first part, we discuss the connections between data science and game design.
What is ethnography, and how has it been used in the professional world? This article is a quick and dirty crash course for someone who has never heard of (or knows little about) ethnography.
Anthropology
at its most basic is the study of human cultures and societies. Cultural anthropologists generally seek
to understand current cultures and societies by conducting ethnography.
In short, ethnography involves seeking to understand the lived experiences of a particular culture, setting, group, or other context by some combination of being with those in that context (called participant-observation), interviewing or talking with them, and analyzing what happens and what is produced in that context.
It is an umbrella term for a set of methods (including participant-observation, interviews, group interviews or focus groups, digital recording, etc.) employed with that goal, and most ethnographic projects use some subset of these methods given the needs of the specific project. In this sense, it is similar to other umbrella methodologies – like statistics – in that it encapsulates a wide array of different techniques depending on the context.
One conducts ethnographic research to understand something about the lived experiences of a context. In the professional world, for example, ethnography is frequently useful in the following contexts:
Market Research: When trying to understand customers and/or users in-depth
Product Design: When trying to design or modify a product by seeing how people use it in action
Organizational Communication and Development: When trying to understand a “people problem” within an organization.
In this article, I expound in more detail on situations where ethnographic research is useful in in professional settings.
Ethnographies are best understood through examples, so the table below include excellent example ethnographies and ethnographic researchers in various industries/fields:
These, of course, are not the only some situations where ethnography might be helpful. Ethnography is a powerful tool to develop a deep understanding of others’ experiences and to develop innovative and strategic insights.