Why Business Anthropologists Should Reconsider Machine Learning

high angle photo of robot
Photo by Alex Knight on Pexels.com

This article is a follow-up to my previous article – “Integrating Ethnography and Data Science” – written specifically for anthropologists and other ethnographers.

As an anthropologist and data scientist, I often feel caught in the middle two distinct warring factions. Anthropologists and data scientists inherited a historic debate between quantitative and qualitative methodologies in social research within modern Western societies. At its core, this debate has centered on the difference between objective, prescriptive, top-downtechniques and subjective, sitautional, flexible, descritpive bottom-up approaches.[i] In this ensuing conflict, quantative research has been demarcated into the top-down faction and qualitative research within the bottom-up faction to the detriment of understanding both properly.

In my experience on both “sides,” I have seen a tendency among anthropologists to lump all quantitative social research as proscriptive and top-down and thus miss the important subtleties within data science and other quantitative techniques. Machine learning techniques within the field are a partial shift towards bottom-up, situational and iterative quantitative analysis, and business anthropologists should explore what data scientists do as a chance to redevelop their relationship with quantitative analysis.

Shifts in Machine Learning

Text Box: Data science is in a uniquely formative and adolescent period.

Shifts within machine learning algorithm development give impetus for incorporating quantitative techniques that are local and interpretive. The debate between top-down vs. bottom-up knowledge production does not need – or at least may no longer need– to divide quantitative and qualitative techniques. Machine learning algorithms “leave open the possibility of situated knowledge production, entangled with narrative,” a clear parallel to qualitative ethnographic techniques.[ii]

At the same time, this shift towards iterative and flexible machine learning techniques is not total within data science: aspects of top-down frameworks remain, in terms of personnel, objectives, habits, strategies, and evaluation criteria. But, seeds of bottom-up thinking definitely exist prominently within data science, with the potential to significantly reshape data science and possibly quantitative analysis in general.

As a discipline, data science is in a uniquely formative and adolescent period, developing into its “standard” practices. This leads to significant fluctuations as the data scientist community defines its methodology. The set of standard practices that we now typically call “traditional” or “standard” statistics, generally taught in introductory statistics courses, developed over a several decade period in the late nineteenth and early twentieth century, especially in Britain.[iii] Connected with recent computer technology, data science is in a similarly formative period right now – developing its standard techniques and ways of thinking. This formative period is a strategic time for anthropologists to encourage bottom-up quantative techniques.

Conclusion

Business anthropologists could and should be instrumental in helping to develop and innovatively utilize these situational and iterative machine learning techniques. This is a strategic time for business anthropologists to do the following:

  1. Immerse themselves into data science and encourage and cultivate bottom-up quantative machine learning techniques within data science
  2. Cultivate and incorporate (when applicable) situational and iterative machine learning approaches in its ethnographies

For both, anthropologists should use the strengths of ethnographic and anthropological thinking to help develop bottom-up machine learning that is grounded in flexible to specific local contexts. Each requires business anthropologists to reexplore their relationship with data science and machine learning instead of treating it as part of an opposing “methodological clan.” [iv]


[i] Nafus, D., & Knox, H. (2018). Ethnography for a Data-Saturated World. Manchester: Manchester University Press, 11-12

[ii] Ibid, 15-17.

[iii] Mackenzie, D. (1981). Statistics in Britain 1865–1930: The Social Construction of Scientific Knowledge. Edinburgh: Edinburgh University Press.

[iv] Seaver, N. (2015). Bastard Algebra. In T. Boellstorff, & B. Maurer, Data, Now Bigger and Better (pp. 27-46). Chicago: Prickly Paradigm Press, 39.

Maker Anthropologist in the Tech Field: Interview with Astrid Countee (Interview #1 in the Interview Series)

For my first interview in the Interview Series, I interviewed Astrid Countee. She is a business anthropologist and technologist with a background in anthropology, software engineering, and data science. She currently works as a user researcher at the peer-to-peer distributed company Holo, as a research associate at The Plenary, as an arts and education nonprofit, and as a co-founder of Missing Link Studios which distributes the This Anthro Life podcast. 

If the audio does not play on your computer, you can download it here:


Over our conversation, we discussed the following:

  1. Astrid’s work as a technologist and anthropology
  2. Strategies for how to develop programming and data skills as an anthropologist
  3. Astrid’s experiences developing and using statistical and data science tools in her work
  4. The importance of maker anthropology

Our conversation touched on a variety of exciting topics, which I hope to follow-up on in more detail in the coming months. I hope you enjoy.


To learn more about Astrid and her work, see her LinkedIn page: https://www.linkedin.com/in/astridcountee

Here are the various items that she mentioned during the conversation:

Thanks, Astrid, for being willing to share your insights.

Next Interview in the Interview Series: https://ethno-data.com/schaun-interview-1/

Data Scientist, Entrepreneur, and Artist: Interview with Emi Harry Part 1 of 3 (Interview #4 in the Interview Series)

For my fourth interview in the Interview Series, I interviewed Emi Harry. This is the first part of three of our conversation. Emi Harry is the co-founder of Naina Tech Inc., a New York-based tech startup that is poised to launch an adaptive learning platform for early childhood education in the U.S. and Nigeria’s underserved communities. As a highly skilled data scientist and social entrepreneur, Harry is also on the board of Alula Learning, an EdTech learning management systems provider, and Manna, a health and nutrition company, both in Nigeria. She has had a diverse professional experience, having worked in the food, oil and gas, entertainment, and fashion industries in Nigeria, as well as the entertainment, non-profit, and education industries in the United States. Currently, she balances her time between working in tech, creative writing, and fashion designing.

Her educational qualifications include B.S. in Mathematics, University of Lagos, Nigeria; Master’s in Social Entrepreneurship, Hult International Business School, San Francisco; M.Sc. in Data Analytics/Science, Fordham University, New York, and is on track to earn a M.Sc. in Computer Science from Pace University New York.

During this first part of our conversation, we discussed the data science company she founded and how she learned data science. 

Links to the next two parts of the interview:

To learn more about Emi Harry, check these out:

Data Scientist, Entrepreneur, and Artist: Interview with Emi Harry Part 2 of 3 (Interview #5 in the Interview Series)

This is the second part of my interview with Emi Harry as part of my Interview Series. In it, she discusses her experiences of racial discrimination in data science as a black woman, how she manages her dual background in data science and fashion, and how she leverages her storytelling and communication skills as a data scientist.  If you would like to start at the beginning of my interview with her, click here.

Links to the other two parts of the interview:

Emi Harry is the co-founder of Naina Tech Inc., a New York-based tech startup that is poised to launch an adaptive learning platform for early childhood education in the U.S. and Nigeria’s underserved communities. As a highly skilled data scientist and social entrepreneur, Harry is also on the board of Alula Learning, an EdTech learning management systems provider, and Manna, a health and nutrition company, both in Nigeria. She has had a diverse professional experience, having worked in the food, oil and gas, entertainment, and fashion industries in Nigeria, as well as the entertainment, non-profit, and education industries in the United States. Currently, she balances her time between working in tech, creative writing, and fashion designing.

Her educational qualifications include B.S. in Mathematics, University of Lagos, Nigeria; Master’s in Social Entrepreneurship, Hult International Business School, San Francisco; M.Sc. in Data Analytics/Science, Fordham University, New York, and is on track to earn a M.Sc. in Computer Science from Pace University New York.

To learn more about Emi Harry, check these out:

Data Scientist, Entrepreneur, and Artist: Interview with Emi Harry Part 3 of 3 (Interview #6 in the Interview Series)

This is the third part of my interview with Emi Harry as part of my Interview Series. In it, she discusses her dual identify as a data scientist and entrepreneur, including how what it takes to be an entrepreneur, her experiences starting a data science company and recommendations she has for any data scientists considering starting their own.

Emi Harry is the co-founder of Naina Tech Inc., a New York-based tech startup that is poised to launch an adaptive learning platform for early childhood education in the U.S. and Nigeria’s underserved communities. As a highly skilled data scientist and social entrepreneur, Harry is also on the board of Alula Learning, an EdTech learning management systems provider, and Manna, a health and nutrition company, both in Nigeria. She has had a diverse professional experience, having worked in the food, oil and gas, entertainment, and fashion industries in Nigeria, as well as the entertainment, non-profit, and education industries in the United States. Currently, she balances her time between working in tech, creative writing, and fashion designing.

Her educational qualifications include B.S. in Mathematics, University of Lagos, Nigeria; Master’s in Social Entrepreneurship, Hult International Business School, San Francisco; M.Sc. in Data Analytics/Science, Fordham University, New York, and is on track to earn a M.Sc. in Computer Science from Pace University New York.

Links to the first two parts of the interview:

To learn more about Emi Harry, check these out:

Anti-Corruption Anthropologist in Kazakhstan: Interview with Olga Shiyan (Interview #7 in the Interview Series)

I interviewed Olga Shiyan as part of my Interview Series. In it, she discusses her anti-corruption work in Kazakhstan with Transparency International. In particular, she highlights various projects that have integrated anthropology with data science and statistics. 

Olga Shiyan is the Executive Director of the Transparency International’s chapter in Kazakhstan. She specializes in advocacy, legislation and draft laws, and democratic training programs. For this, she has developed research methods that combine anthropology and data science and statistics. In 2019, the Kazakhstan Geographic Society awarder for a medal for anti-corruption work.

To learn more about Olga, feel free to check out the following:

1. Monitoring the state of corruption in Kazakhstan for 2020, presentation

2. Presentation of the research in the media, speaking on a TV show, talk TV show

3. Monitoring the state of corruption in Kazakhstan for 2019

4. The index of civic participation and influence on lawmaking in Kazakhstan

5. 13 stories about lawmaking in Kazakhstan                                             

6. Development of local self-government in Kazakhstan: analysis of fourth-level budgets

7. Ethno-confessional monitoring. Kazakhstan. 2018.

8. Customs corruption in Kazakhstan: mirror analysis of trade

9. Opportunities for Civil Control in Kazakhstan: Experience of Ethnological Research

10. The thorny path of labor migrants to Russia: the experience of participant observation

11. Anthropological approach to the study of the influence of gift exchange on informal socio-economic relations

12. Anthropological approach in the interdisciplinary study of the phenomenon of corruption

13. Summer anti-corruption school of Transparency Kazakhstan

14. Transparency Kazakhstan School of Investigative Journalism

Four Innovative Projects that Integrated Data Science and Ethnography

In a previous article, I have discussed the value of integrating data science and ethnography. On LinkedIn, people commented that they were interested and wanted to hear more detail on potential ways to do this. I replied, “I have found explaining how to conduct studies that integrate the two practically is easier to demonstrate through example than abstractly since the details of how to do it vary based on the specific needs of each project.”

In this article, I intend to do exactly that: analyze four innovative projects that in some way integrated data science and ethnography. I hope these will spur your creative juices to help think through how to creatively combine them for whatever project you are working on.

Synopsis:

Project:How It Integrated Data Science and Ethnography:Link to Learn More:
No Show ModelUsed ethnography to design machine learning softwarehttps://ethno-data.com/show-rate-predictor/
Cybersensitivity StudyUsed machine learning to scale up the scope of an ethnographic inquiry to a larger populationhttps://ethno-data.com/masters-practicum-summary/
Facebook Newsfeed Folk TheoriesUsed ethnography to understand how users make sense of and behave towards a machine learning system they encounter and how this, in turn, shapes the development of the machine learning algorithm(s)https://dl.acm.org/doi/10.1145/2858036.2858494
Thing EthnographyUsed machine learning to incorporate objects’ interactions into ethnographic researchhttps://dl.acm.org/doi/10.1145/2901790.2901905 and https://www.semanticscholar.org/paper/Things-Making-Things%3A-An-Ethnography-of-the-Giaccardi-Speed/2db5feac9cc743767fd23aeded3aa555ec8683a4?p2df

Project 1: No Show Model

A medical clinic at a hospital system in New York City asked me to use machine learning to build a show rate predictor in order to inform an improve its scheduling practices. During the initial construction phase, I used ethnography to both understand in more depth understand the scheduling problem the clinic faced and determine an appropriate interface design.

Through an ethnographic inquiry, I discovered the most important question(s) schedulers ask when scheduling their appointments. This was, “Of the people scheduled for a given doctor on a particular day, how many of them are likely to actually show up?” I then built a machine learning model to answer this exact question. My ethnographic inquiry provided me the design requirements for the data science project.  

In addition, I used my ethnographic inquiries to design the interface. I observed how schedulers interacted with their current scheduling software, which gave me a sense for what kind of visualizations would work or not work for my app.

This project exemplifies how ethnography can be helpful both in the development stage of a machine learning project to determine machine learning algorithm(s) needs and on the frontend when communicating the algorithm(s) to and assessing its successfulness with its users.

As both an ethnographer and a data scientist, I was able to translate my ethnographic insights seamlessly into machine learning modeling and API specifications and also conducted follow-up ethnographic inquiries to ensure that what I was building would meet their needs.

Project 2: Cybersensitivity Study

I conducted this project with Indicia Consulting. Its goal was to explore potential connections between individuals’ energy consumption and their relationship with new technology. This is an example of using ethnography to explore and determine potential social and cultural patterns in-depth with a few people and then using data science to analyze those patterns across a large population.

We started the project by observing and interviewing about thirty participants, but as the study progressed, we needed to develop a scalable method to analyze the patterns across whole communities, counties, and even states.

Ethnography is a great tool for exploring a phenomenon in-depth and for developing initial patterns, but it is resource-intensive and thus difficult to conduct on a large group of people. It is not practical for saying analyzing thousands of people. Data science, on the other hand, can easily test the validity across an entire population of patterns noticed in smaller ethnographic studies, yet because it often lacks the granularity of ethnography, would often miss intricate patterns.

Ethnography is also great on the back end for determining whether the implemented machine learning models and their resulting insights make sense on the ground. This forms a type of iterative feedback loop, where data science scales up ethnographic insights and ethnography contextualizes data science models.

Thus, ethnography and data science cover each other’s weaknesses well, forming a great methodological duo for projects centered around trying to understand customers, users, colleagues, or other users in-depth.

Project 3: Facebook Newsfeed Folk Theories

In their study, Motahhare Eslami and her team of researchers conducted an ethnographic inquiry into how various Facebook users conceived of how the Facebook Newsfeed selects which posts/stories rise to the top of their feeds. They analyze several different “folk theories” or working theories by everyday people for the criteria this machine learning system uses to select top stories.

How users think the overall system works influences how they respond to the newsfeed. Users who believe, for example, that the algorithm will prioritize the posts of friends for whom they have liked in the past will often intentionally like the posts of their closest friends and family so that they can see more of their posts.

Users’ perspectives on how the Newsfeed algorithm works influences how they respond to it, which, in turn, affects the very data the algorithm learns from and thus how the algorithm develops. This creates a cyclic feedback loop that influences the development of the machine learning algorithmic systems over time.

Their research exemplifies the importance of understanding how people think about, respond to, and more broadly relate with machine learning-based software systems. Ethnographies into people’s interactions with such systems is a crucial way to develop this understanding.

In a way, many machine learning algorithms are very social in nature: they – or at least the overall software system in which they exist – often succeed or fail based on how humans interact with them. In such cases, no matter how technically robust a machine learning algorithm is, if potential users cannot positively and productively relate to it, then it will fail.

Ethnographies into the “social life” of machine learning software systems (by which I mean how they become a part of – or in some cases fail to become a part of – individuals’ lives) helps understand how the algorithm is developing or learning and determine whether they are successful in what we intended them to do. Such ethnographies require not only in-depth expertise in ethnographic methodology but also an in-depth understanding how machine learning algorithms work to in turn understand how social behavior might be influencing their internal development.

Project 4: Thing Ethnography

Elise Giaccardi and her research team have been pioneering the utilization of data science and machine learning to understand and incorporate the perspective of things into ethnographies. With the development of the internet of things (IOT), she suggests that the data from object sensors could provide fresh insights in ethnographies of how humans relate to their environment by helping to describe how these objects relate to each other. She calls this thing ethnography.

This experimental approach exemplifies one way to use machine learning algorithms within ethnographies as social processes/interactions in of themselves. This could be an innovative way to analyze the social role of these IOT objects in daily life within ethnographic studies. If Eslami’s work exemplifies a way to graft ethnographic analysis into the design cycle of machine learning algorithms, Giaccardi’s research illustrates one way to incorporate data science and machine learning analysis into ethnographies.

Conclusion

Here are four examples of innovative projects that involve integrating data science and ethnography to meet their respective goals. I do not intend these to be the complete or exhaustive account of how to integrate these methodologies but as food for thought to spur further creative thinking into how to connect them.

For those who, when they hear the idea of integrating data science and ethnography, ask the reasonable question, “Interesting but what would that look like practically?”, here are four examples of how it could look. Hopefully, they are helpful in developing your own ideas for how to combine them in whatever project you are working on, even if its details are completely different.

Photo credit #1: StartupStockPhotos at https://pixabay.com/photos/startup-meeting-brainstorming-594090/

Photo credit #2: DarkoStojanovicat at https://pixabay.com/photos/medical-appointment-doctor-563427/  

Photo credit #3: NASA at https://unsplash.com/photos/Q1p7bh3SHj8  

Photo credit #4: Kon Karampelas at https://unsplash.com/photos/HUBofEFQ6CA

Photo credit #5: Pixabay at https://www.pexels.com/photo/app-business-connection-device-221185/  

Using Data Science and Ethnography to Build a Show Rate Predictor

I recently integrated ethnography and data science to develop a Show Rate Predictor for an (anonymous) hospital system. Many readers have asked for real-world examples of this integration, and this project demonstrates how ethnography and data science can join to build machine learning-based software that makes sense to users and meets their needs.

Part 1: Scoping out the Project

A particular clinic in the hospital system was experiencing a large number of appointment no-shows, which produced wasted time, frustration, and confusion for both its patients and employees. I was asked to use data science and machine learning to better understand and improve their scheduling.

I started the project by conducting ethnographic research into the clinic to learn more about how scheduling occurs normally, what effect it was having on the clinic, and what driving problems employees saw. In particular, I observed and interviewed scheduling assistants to understand their day-to-day work and their perspectives on no-shows.

One major lesson I learned through all this was that when scheduling an appointment, schedulers are constantly trying to determine how many people to schedule on a given doctor’s shift to ensure the right number of people show up. For example, say 12-14 patients is a good number of patients for Dr. Rodriguez’s (made up name) Wednesday morning shift. When deciding whether to schedule an appointment for the given patient with Dr. Rodriguez on an upcoming Wednesday, the scheduling assistants try to determine, given the appointments currently scheduled then, whether they can expect 12-14 patients to show up. This was often an inexact science. They would often have to schedule 20-25 patients on a particular doctor’s shift to ensure their ideal window of 12-14 patients would actually come that day. This could create the potential for chaos, however, where too many patients arriving on some days and too few on others.

This question – how many appointments can we expect or predict to occur on a given doctor’s shift – became my driving question to answer with machine learning. After checking in with the various stakeholders at the clinic to make sure this was in fact an important and useful question to answer with machine learning, I started building.

Part 2: Building the Model

Now that I had a driving, answerable question, I decided to break it down into two sequential machine learning models:

  1. The first model learned to predict the probability that a given appointment would occur, learning from the history of occurring or no-show appointments.
  2. The second model, using the appointment probabilities from the first model, estimated how many appointments might occur for every doctors’ shift.

The first model combined three streams of data to assess the no-show probability: appointment data (such as how long ago it was scheduled, type of appointment, etc.); patient information, especially past appointment history; and doctor information. I performed extensive feature selection to determine the best subset of variables to use and tested several types of machine learning models before settling on gradient boosting.

The second model used the probabilities in the first model as input data to predict how many patients to expect to come on each doctors’ shift. I settled on a neural network for the model.

Part 3: Building an App

Next, I worked with the software engineers on my team to develop an app to employ these models in real time and communicate the information to schedulers as they scheduled appointments. My ethnographic research was invaluable for developing how to construct the app.

On the back end, the app calculated the probability that all future appointments would occur, updating with new calculations for newly scheduled or edited appointments. Once a week, it would incorporate that week’s new appointment data and shift attendance to each model’s training data and update those models accordingly.  

Through my ethnographic research, I observed how schedulers approached scheduling appointments, including what software they used in the process and how they used each. I used that to determine the best ways to communicate that information, periodically showing my ideas to the schedulers to make sure my strategy would be helpful.

I constructed an interface to communicate the information that would complement the current software they used. In addition to displaying the number of patients expected to arrive, if the machine learning algorithm was predicting that a particular shift was underbooked, it would mark the shift in green on the calendar interface; yellow if the shift was projected to have the ideal number of patients, and red if already expected have too many patients. The color-coding allowed easy visualization of the information in the moment: when trying to find an appointment time for a patient, they could easily look for the green shifts or yellow if they had to, but steer clear of the red. When zooming in on a specific shift, each appointment would be color-coded (likely, unlikely, and in the middle) as well based on the probability that it would occur.

Conclusion

This is one example of a projects that integrates data science and ethnography to build a machine learning app. I used ethnography to construct the app’s parameters and framework. It tethered the app in the needs of the schedulers, ensuring that the machine learning modeling I developed was useful to those who would use it. Frequent check-ins before each step in their development also helped confirm that my proposed concept would in fact help meet their needs.

My data science and machine learning expertise helped guide me in the ethnographic process as well. Being an expert in how machine learning worked and what sorts of questions it could answer allowed me to easily synthesize the insights from my ethnographic inquiries into buildable machine learning models. I understood what machine learning was capable (and not capable) of doing, and I could intuitively develop strategic ways to employ machine learning to address issues they were having.

Hence, my dual role as an ethnography and data scientist benefitted the project greatly. My listening skills from ethnography enabled me to uncover the underlying questions/issues schedulers faced, and my data science expertise gave me the technical skills to develop a viable machine learning solution. Without listening patiently through extensive ethnography, I would not have understood the problem sufficiently, but without my data science expertise, I would have been unable to decipher which questions(s) or issue(s) machine learning could realistically address and how.

This exemplifies why a joint expertise in data science and ethnography is invaluable in developing machine learning software. Two different individuals or teams could complete each separately – an ethnographer(s) analyze the users’ needs and a data scientist(s) then determine whether machine learning modeling could help. But this seems unnecessarily disjointed, potentially producing misunderstanding, confusion, and chaos. By adding an additional layer of people, it can easily lead to either the ethnographer(s) uncovering needs way too broad or complex for a machine learning-based solution to help or the data scientist(s) trying to impose their machine learning “solution” to a problem the users do not have.

Developing expertise in both makes it much easier to simultaneously understand the problems or questions in a particular context and build a doable data science solution.

Photo credit #1: DarkoStojanovic at https://pixabay.com/photos/medical-appointment-doctor-563427/  

Photo credit #2: geralt at https://pixabay.com/illustrations/time-doctor-doctor-s-appointment-481445/

Photo credit #3: Pixabay at https://www.pexels.com/photo/light-road-red-yellow-46287/  

How to Analyze Texts with Data Science

flat lay photography of an open book beside coffee mug

A friend and fellow professor, Dr. Eve Pinkser, asked me to give a guest lecture on quantitative text analysis techniques within data science for her Public Health Policy Research Methods class with the University of Illinois at Chicago on April 13th, 2020. Multiple people have asked me similar questions about how to use data science to analyze texts quantitatively, so I figured I would post my presentation for anyone interested in learning more.

It provides a basic introduction of the different approaches so that you can determine which to explore in more detail. I have found that many people who are new to data science feel paralyzed when trying to navigate through the vast array of data science techniques out there and unsure where to start.

Many of her students needed to conduct quantitative textual analysis as part of their doctoral work but struggled in determining what type of quantitative research to employ. She asked me to come in and explain the various data science and machine learning-based textual analysis techniques, since this was out of her area of expertise. The goal of the presentation was to help the PhD students in the class think through the types of data science quantitative text analysis techniques that would be helpful for their doctoral research projects.

Hopefully, it would likewise allow you to determine the type or types of text analysis you might need so that you can then look those up in more detail. Textual analysis, as well as the wider field of natural language processing within which it is a part of, is a quickly up-and-coming subfield within data science doing important and groundbreaking work.

Photo credit: fotografierende at https://www.pexels.com/photo/flat-lay-photography-of-an-open-book-beside-coffee-mug-3278768/

Data Science and the Myth of the “Math Person”

woman holding books

“Data science is doable,” a fellow attendee of the EPIC’s 2018 conference in Honolulu would exclaim like a mantra. The conference was for business ethnographers and UX researchers interested in understanding and integrating data science and machine learning into their research. She was specifically trying to address a tendency she has noticed– which I have seen as well: qualitative researchers and other so-called “non-math people” frequently believe that data science is far too technical for them. This seems ultimately rooted in cultural myths about math and math-related fields like computer science, engineering, and now data science, and in a similar vein as her statement, my goal in this essay is to discuss these attitudes and show that data science, like math, is relatable and doable if you treat it as such.

The “Math Person”

In the United States, many possess an implied image of a “math person:” a person supposedly naturally gifted at mathematics. And many who do not see themselves as fitting that image simply decry that math simply isn’t for them. The idea that some people are inherently able and unable to do math is false, however, and prevents people from trying to become good at the discipline, even if they might enjoy and/or excel at it.

Most skills in life, including mathematical skills, are like muscles: you do not innately possess or lack that skill, but rather your skill develops as you practice and refine that activity. Anybody can develop a skill if they practice it enough.  

Scholars in anthropology, sociology, psychology, and education have documented how math is implicitly and explicitly portrayed as something some people can do and some cannot do, especially in math classes in grade school. Starting in early childhood, we implicitly and sometimes explicitly learn the idea that some people are naturally gifted at math but for others, math is simply not their thing. Some internalize that they are gifted at math and thus take the time to practice enough to develop and refine their mathematical skills; while others internalize that they cannot do math and thus their mathematical abilities become stagnant. But this is simply not true.

Anyone can learn and do math if he or she practices math and cultivates mathematical thinking. If you do not cultivate your math muscle, then well it will become underdeveloped and, then, yes, math becomes harder to do. Thus, as a cruel irony someone internalizing that he or she cannot do math can turn into a self-fulfilling prophecy: he or she gives up on developing mathematical skills, which leads to its further underdevelopment.

Similarly, we cultivate another false myth that people skilled in mathematics (or math-related fields like computer science, engineering, and data science) in general do not possess strong social and interpersonal communication skills. The root for this stereotype lies in how we think of mathematical and logical thinking than actual characteristics of mathematicians, computer scientists, or engineers. Social scientists who have studied the social skills of mathematicians, computer scientists, and engineers have found no discernable difference in social and interpersonal communication skills with the rest of the world.  

Quantitative and Qualitative Specialties

Anyone can learn and do math if he or she practices math and cultivates mathematical thinking.

The belief that some people are just inherently good at math and that such people do not possess strong social and interpersonal communication skills contributes to the division between quantitative and qualitative social research, in both academic and professional contexts. These attitudes help cultivate the false idea that quantitative research and qualitative research are distinct skill sets for different types of people: that supposedly quantitative research can only be done “math people” and qualitative research by “people people.” They suddenly become separate specialties, even though social research by its very nature involves both. Such a split unnecessarily stifles authentic and holistic understanding of people and society.

In professional and business research contexts, both qualitative and quantitative researchers should work with each other and eventually through that process, slowly learn each other’s skills. If done well, this would incentivize researchers to cultivate both mathematical/quantitative, and interpersonal/qualitative research skills.

It would reward professional researchers who develop both skillsets and leverage them in their research, instead of encouraging researchers to specialize in one or the other. It could also encourage universities to require in-depth training of both to train their students to become future workers, instead of requiring that students choose among disciplines that promote one track over the other.

Working together is only the first step, however, whose success hinges on whether it ultimately leads to the integration of these supposedly separate skillsets. Frequently, when qualitative and quantitative research teams work together, they work mostly independently – qualitative researchers on the qualitative aspect of the project and quantitative researchers on the quantitative aspects of the project – thus reinforcing the supposed distinction between them. Instead, such collaboration should involve qualitative researchers developing quantitative research skills by practicing such methods and quantitative researchers similarly developing qualitative skills.

Conclusion

Anyone can develop mathematics and data science skills if they practice at it. The same goes with the interpersonal skills necessary for ethnographic and other qualitative research. Depicting them as separate specialties – even if they come together to do each of their specialized parts in a single research projects – functions stifles their integration as a singular set of tools for an individual and reinforces the false myths we have been teaching ourselves that data science is for math, programming, or engineering people and that ethnography is for “people people.” This separation stifles holistic and authentic social research, which inevitably involves qualitative and quantitative approaches.

Photo credit #1: Andrea Piacquadio at https://www.pexels.com/photo/woman-holding-books-3768126/

Photo credit #2: Antoine Dautry at https://unsplash.com/photos/_zsL306fDck

Photo credit #3: Mike Lawrence at https://www.flickr.com/photos/157270154@N05/28172146158/ and http://www.creditdebitpro.com/

Photo credit #4: Ryan Jacobson at https://unsplash.com/photos/rOYhgmDIOg8