Three Key Differences between Data Science and Statistics

woman draw a light bulb in white board

Data science’s popularity has grown in the last few years, and many have confused it with its older, more familiar relative: statistics. As someone who has worked both as a data scientist and as a statistician, I frequently encounter such confusion. This post seeks to clarify some of the key differences between them.

Before I get into their differences, though, let’s define them. Statistics as a discipline refers to the mathematical processes of collecting, organizing, analyzing, and communicating data. Within statistics, I generally define “traditional” statistics as the the statistical processes taught in introductory statistics courses like basic descriptive statistics, hypothesis testing, confidence intervals, and so on: generally what people outside of statistics, especially in the business world, think of when they hear the word “statistics.”

Data science in its most broad sense is the multi-disciplinary science of organizing, processing, and analyzing computational data to solve problems. Although they are similar, data science differs from both statistics and “traditional” statistics:

DifferenceStatistics Data Science
#1 Field of Mathematics Interdisciplinary
#2 Sampled Data Comprehensive Data
#3 Confirming Hypothesis Exploratory Hypotheses

Difference #1: Data Science Is More than a Field of Mathematics

Statistics is a field of mathematics; whereas, data science refers to more than just math. At its simplest, data science centers around the use of computational data to solve problems,[i] which means it includes the mathematics/statistics needed to break down the computational data but also the computer science and engineering thinking necessary to code those algorithms efficiently and effectively, and the business, policy, or other subject-specific “smarts” to develop strategic decision-making based on that analysis.

Thus, statistics forms a crucial component of data science, but data science includes more than just statistics. Statistics, as a field of mathematics, just includes the mathematical processes of analyzing and interpreting data; whereas, data science also includes the algorithmic problem-solving to do the analysis computationally and the art of utilizing that analysis to make decisions to meet the practical needs in the context. Statistics clearly forms a crucial part of the process of data science, but data science generally refers to the entire process of analyzing computational data. On a practical level, many data scientists do not come from a pure statistics background but from a computer science or engineering, leveraging their coding expertise to develop efficient algorithmic systems.

laptop computer on glass-top table

Difference #2: Comprehensive vs Sample Data

In statistical studies, researchers are often unable to analyze the entire population, that is the whole group they are analyzing, so instead they create a smaller, more manageable sample of individuals that they hope represents the population as a whole. Data science projects, however, often involves analyzing big, summative data, encapsulating the entire population.

 The tools of traditional statistics work well for scientific studies, where one must go out and collect data on the topic in question. Because this is generally very expensive and time-consuming, researchers can only collect data on a subset of the wider population most of the time.

Recent developments in computation, including the ability to gather, store, transfer, and process greater computational data, have expanded the type of quantitative research now possible, and data science has developed to address these new types of research. Instead of gathering a carefully chosen sample of the population based on a heavily scrutinized set of variables, many data science projects require finding meaningful insights from the myriads of data already collected about the entire population.

stack of jigsaw puzzle pieces

Difference #3: Exploratory vs Confirming  

Data scientists often seek to build models that do something with the data; whereas, statisticians through their analysis seek to learn something from the data. Data scientists thus often assess their machine learning models based on how effectively they perform a given task, like how well it optimizes a variable, determines the best course of action, correctly identifies features of an image, provides a good recommendation for the user, and so on. To do this, data scientists often compare the effectiveness or accuracy of the many models based on a chosen performance metric(s).

In traditional statistics, the questions often center around using data to understand the research topic based on the findings from a sample. Questions then center around what the sample can say about the wider population and how likely its results would represent or apply to that wider population.

In contrast, machine learning models generally do not seek to explain the research topic but to do something, which can lead to very different research strategy. Data scientists generally try to determine/produce the algorithm with the best performance (given whatever criteria they use to assess how a performance is “better”), testing many models in the process. Statisticians often employ a single model they think represents the context accurately and then draw conclusions based on it.

Thus, data science is often a form of exploratory analysis, experimenting with several models to determine the best one for a task, and statistics confirmatory analysis, seeking to confirm how reasonable it is to conclude a given hypothesis or hypotheses to be true for the wider population.

A lot of scientific research has been theory confirming: a scientist has a model or theory of the world; they design and conduct an experiment to assess this model; then use hypothesis testing to confirm or negate that model based on the results of the experiment. With changes in data availability and computing, the value of exploratory analysis, data mining, and using data to generate hypotheses has increased dramatically (Carmichael 126).

Data science as a discipline has been at the forefront of utilizing increased computing abilities to conduct exploratory work.

person holding gold-colored pocket watch

Conclusion

 A data scientist friend of mine once quipped to me that data science simply is applied computational statistics (c.f. this). There is some truth in this: the mathematics of data science work falls within statistics, since it involves collecting, analyzing, and communicating data, and, with its emphasis and utilization of computational data, would definitely be a part of computational statistics. The mathematics of data science is also very clearly applied: geared towards solving practical problems/needs. Hence, data science and statistics interrelate.

They differ, however, both in their formal definitions and practical understandings. Modern computation and big data technologies have had a major influence on data science. Within statistics, computational statistics also seeks to leverage these resources, but what has become “traditional” statistics does not (yet) incorporate these. I suspect in the next few years or decades, developments in modern computing, data science, and computational statistics will reshape what people consider “traditional” or “standard” statistics to be a bit closer to the data science of today.

   For more details, see the following useful resources:

Ian Carmichael’s and J.S. Marron’s “Data science vs. statistics: two cultures?” in the Japanese Journal of Statistics and Data Science: https://link.springer.com/article/10.1007/s42081-018-0009-3
“Data Scientists Versus Statisticians” at https://opendatascience.com/data-scientists-versus-statisticians/ and https://medium.com/odscjournal/data-scientists-versus-statisticians-8ea146b7a47f
“Differences between Data Science and Statistics” at https://www.educba.com/data-science-vs-statistics/

Photo credit #1: Andrea Piacquadio at https://www.pexels.com/photo/woman-draw-a-light-bulb-in-white-board-3758105/

Photo credit #2: Carlos Muza at https://unsplash.com/photos/hpjSkU2UYSU

Photo credit #3: Hans-Peter Gauster at https://unsplash.com/photos/3y1zF4hIPCg

Photo credit #4: Kendall Lane at https://unsplash.com/photos/yEDhhN5zP4o


[i] Carmichael 118.

Anthropologist in I.T. (Comic, Funny)

Here’s a fun little comic about some of my experiences working as an anthropologist in I.T. It’s actually a blast.

I wrote this comic for the University of Memphis Anthropology Department, where they featured it on their Fall 2018 newsletter.

Thank you, Rusty Haner, for illustrating the panels.

Data Science and the Myth of the “Math Person”

woman holding books

“Data science is doable,” a fellow attendee of the EPIC’s 2018 conference in Honolulu would exclaim like a mantra. The conference was for business ethnographers and UX researchers interested in understanding and integrating data science and machine learning into their research. She was specifically trying to address a tendency she has noticed– which I have seen as well: qualitative researchers and other so-called “non-math people” frequently believe that data science is far too technical for them. This seems ultimately rooted in cultural myths about math and math-related fields like computer science, engineering, and now data science, and in a similar vein as her statement, my goal in this essay is to discuss these attitudes and show that data science, like math, is relatable and doable if you treat it as such.

The “Math Person”

In the United States, many possess an implied image of a “math person:” a person supposedly naturally gifted at mathematics. And many who do not see themselves as fitting that image simply decry that math simply isn’t for them. The idea that some people are inherently able and unable to do math is false, however, and prevents people from trying to become good at the discipline, even if they might enjoy and/or excel at it.

Most skills in life, including mathematical skills, are like muscles: you do not innately possess or lack that skill, but rather your skill develops as you practice and refine that activity. Anybody can develop a skill if they practice it enough.  

Scholars in anthropology, sociology, psychology, and education have documented how math is implicitly and explicitly portrayed as something some people can do and some cannot do, especially in math classes in grade school. Starting in early childhood, we implicitly and sometimes explicitly learn the idea that some people are naturally gifted at math but for others, math is simply not their thing. Some internalize that they are gifted at math and thus take the time to practice enough to develop and refine their mathematical skills; while others internalize that they cannot do math and thus their mathematical abilities become stagnant. But this is simply not true.

Anyone can learn and do math if he or she practices math and cultivates mathematical thinking. If you do not cultivate your math muscle, then well it will become underdeveloped and, then, yes, math becomes harder to do. Thus, as a cruel irony someone internalizing that he or she cannot do math can turn into a self-fulfilling prophecy: he or she gives up on developing mathematical skills, which leads to its further underdevelopment.

Similarly, we cultivate another false myth that people skilled in mathematics (or math-related fields like computer science, engineering, and data science) in general do not possess strong social and interpersonal communication skills. The root for this stereotype lies in how we think of mathematical and logical thinking than actual characteristics of mathematicians, computer scientists, or engineers. Social scientists who have studied the social skills of mathematicians, computer scientists, and engineers have found no discernable difference in social and interpersonal communication skills with the rest of the world.  

Quantitative and Qualitative Specialties

Anyone can learn and do math if he or she practices math and cultivates mathematical thinking.

The belief that some people are just inherently good at math and that such people do not possess strong social and interpersonal communication skills contributes to the division between quantitative and qualitative social research, in both academic and professional contexts. These attitudes help cultivate the false idea that quantitative research and qualitative research are distinct skill sets for different types of people: that supposedly quantitative research can only be done “math people” and qualitative research by “people people.” They suddenly become separate specialties, even though social research by its very nature involves both. Such a split unnecessarily stifles authentic and holistic understanding of people and society.

In professional and business research contexts, both qualitative and quantitative researchers should work with each other and eventually through that process, slowly learn each other’s skills. If done well, this would incentivize researchers to cultivate both mathematical/quantitative, and interpersonal/qualitative research skills.

It would reward professional researchers who develop both skillsets and leverage them in their research, instead of encouraging researchers to specialize in one or the other. It could also encourage universities to require in-depth training of both to train their students to become future workers, instead of requiring that students choose among disciplines that promote one track over the other.

Working together is only the first step, however, whose success hinges on whether it ultimately leads to the integration of these supposedly separate skillsets. Frequently, when qualitative and quantitative research teams work together, they work mostly independently – qualitative researchers on the qualitative aspect of the project and quantitative researchers on the quantitative aspects of the project – thus reinforcing the supposed distinction between them. Instead, such collaboration should involve qualitative researchers developing quantitative research skills by practicing such methods and quantitative researchers similarly developing qualitative skills.

Conclusion

Anyone can develop mathematics and data science skills if they practice at it. The same goes with the interpersonal skills necessary for ethnographic and other qualitative research. Depicting them as separate specialties – even if they come together to do each of their specialized parts in a single research projects – functions stifles their integration as a singular set of tools for an individual and reinforces the false myths we have been teaching ourselves that data science is for math, programming, or engineering people and that ethnography is for “people people.” This separation stifles holistic and authentic social research, which inevitably involves qualitative and quantitative approaches.

Photo credit #1: Andrea Piacquadio at https://www.pexels.com/photo/woman-holding-books-3768126/

Photo credit #2: Antoine Dautry at https://unsplash.com/photos/_zsL306fDck

Photo credit #3: Mike Lawrence at https://www.flickr.com/photos/157270154@N05/28172146158/ and http://www.creditdebitpro.com/

Photo credit #4: Ryan Jacobson at https://unsplash.com/photos/rOYhgmDIOg8

When Is Machine Learning Useful?

In a past blog post, I defined and described what machine learning is. I briefly highlighted four instances where machine learning algorithms are useful. This is what I wrote:

  1. Autonomy: To teach computers to do a task without the direct aid/intervention of humans (e.g. autonomous vehicles)
  2. Fluctuation: Help machines adjust when the requirements and data change over time
  3. Intuitive Processing: Conduct or assist in tasks humans do but are unable to explain how computationally/algorithmically (e.g. image recognition)
  4. Big Data: Breaking down data that is too large to handle otherwise

The goal of this blog post is to explain each in more detail.

Case #1: Autonomy

Car, Automobile, 3D, Self-Driving

The first major use of machine learning centers around teaching computers to do a task or tasks without the direct aid or intervention of humans. Self-driving vehicles are a high-profile example of this: teaching a vehicle to drive (scanning the road and determining how to respond to what is around it) without the aid of or with minimal direct oversight from a human driver.

There are two types basic types of tasks that machine learning systems might perform autonomously:

  1. Tasks humans frequently perform
  2. Tasks humans are unable to perform.

Self-driving cars exemplify the former: humans drive cars, but self-driving cars would perform all or part of the driving process. Another example would be chatbots and virtual assistants like Alexa, Cortana, and Ok Google, which seek to converse with users independently. Such tasks might completely or partially complete the human activity: for example, some customer service chatbots are designed to determine the customer’s issue but then to transfer to a human when the issue has a certain complexity.

Humans have also sought to build autonomous machine learning algorithms to perform tasks that humans are unable to perform. Unlike self-driving cars, which conduct an activity many people do, people might also design a self-driving rover or submarine to drive and operate in a world that humans have so far been unable to inhabit, like other planets in our Solar System or the deep ocean. Search engines are another example: Google uses machine learning to help refine search results, which involves analyzing a massive amount of web data beyond what a human could normally do.

Case #2: Fluctuating Data

Business, Success, Curve, Hand, Draw, Present, Trend

Machine learning is also powerful tool for making sense of and incorporating fluctuating data. Unlike other types of models with fixed processes for how it predicts its values, machine learning models can learn from current patterns and adjust both if the patterns fluctuate overtime or if new use cases arise. This can be especially helpful when trying to forecast the future, allowing the model to decipher new trends if and when they emerge. For example, when predicting stock prices, machine learning algorithms can learn from new data and pick up changing trends to make the model better at predicting the future.

Of course, humans are notorious for changing overtime, so fluctuation is often helpful in models that seek to understand human preferences and behavior. For example, user recommendations – like Netflix’s, Hulu’s, or YouTube’s video recommendation systems – adjust based on the usage overtime, enabling them to respond to individual and/or collective changes in interests.

Case #3: Intuitive Processing

Flat, Recognition, Facial, Face, Woman, System

Data scientist frequently develop machine learning algorithms to teach computers how to do processes that humans do naturally but for which we are unable to fully explain how computationally. For example, popular applications of machine learning center around replicating some aspect of sensory perception: image recognition, sound or speech recognition, etc. These replicate the process of inputting sensory information (e.g. sight and sound) and processing, classifying, and otherwise making sense of that information. Language processing, like chatbots, form another example of this. In these contexts, machine learning algorithms learn a process that humans can do intuitively (see or hear stimuli and understand language) but are unable to fully explain how or why.

Many early forms of machine learning arose out of neurological models of how human brains work. The initial intention of neural nets, for instance, were to model our neurological decision-making process or processes. Now, much contemporary neurological scholarship since has disproven the accuracy of neural nets in representing how our brains and minds work.[i] But, whether they represent how human minds work at all, neural networks have provided a powerful technique for computers to use to process and classify information and make decisions. Likewise, many machine learning algorithms replicate some activity humans do naturally, even if the way they conduct that human task has little to do with how humans would.

Case #4: Big Data

Technology, 5G, Aerial, Abstract Background

Machine learning is a powerful tool when analyzing data that is too large to break down through conventional computational techniques. Recent computer technologies have increased the possibility of data collection, storage, and processing, a major driver in big data. Machine learning has arisen as a major, if not the major, means of analyzing this big data.

Machine learning algorithms can manage a dizzying array of variables and use them to find insightful patterns (like lasso regression for linear modeling). Many big data cases involve hundreds, thousands, and maybe even tens or hundreds of thousands of input variables, and many machine learning techniques (like best subsets selection, stepwise selection, and lasso regression) process the myriads of variables in big data and determine the best ones to use. 

Recent developments computing provides the incredible processing power necessary to do such work (and debatably, machine learning is currently helping to push computational power and provide a demand for greater computational abilities). Hand-calculations and computers several decades ago were often unable to handle the calculations necessary to analyze large information: demonstrated, for example, by the fact that computer scientists invented the now popular neural networks many decades ago, but they did not gain popularity as a method until recent computer processing made them easy and worthwhile to run.

Tractors and other large-scale agricultural techniques coincided historically with the enlargement of farm property sizes, where the such machinery not only allowed farmers to manage large tracks of land but also incentivized larger farms economically. Likewise, machine learning algorithms provide the main technological means to analyze big data, both enabling and in turn incentivized by rise of big data in the professional world.

Conclusion

Here I have described four major uses of machine learning algorithms. Machine learning has become popular in many industries because of at least one of these functionalities, but of course, they are not the only potential current uses. In addition, as we develop machine learning tools, we are constantly inventing more. Given machine learning’s newness compared to many other century-old technologies, time will tell all the ways humans utilize it.

Photo credit #1: Mike MacKenzie at https://www.flickr.com/photos/mikemacmarketing/30212411048/

Photo credit #2: julientromeur at https://pixabay.com/illustrations/car-automobile-3d-self-driving-4343635/

Photo credit #3: geralt at https://pixabay.com/illustrations/business-success-curve-hand-draw-1989130/

Photo credit #4: geralt at https://pixabay.com/illustrations/flat-recognition-facial-face-woman-3252983/

Photo credit #5: mohamed_hassan at https://pixabay.com/illustrations/technology-5g-aerial-4816658/


[i] See Richard, Nagyfi. The differences between Artificial and Biological Neural Networks. 4 September 2018. https://towardsdatascience.com/the-differences-between-artificial-and-biological-neural-networks-a8b46db828b7; and Tcheang, Lili. Are Artificial Neural Networks like the Human Brain? And does it matter? 7 November 2018. https://medium.com/digital-catapult/are-artificial-neural-networks-like-the-human-brain-and-does-it-matter-3add0f029273.

What Is Ethnography: A Short Description for the Unsure

What is ethnography, and how has it been used in the professional world? This article is a quick and dirty crash course for someone who has never heard of (or knows little about) ethnography.

Anthropology at its most basic is the study of human cultures and societies. Cultural anthropologists generally seek to understand current cultures and societies by conducting ethnography.

In short, ethnography involves seeking to understand the lived experiences of a particular culture, setting, group, or other context by some combination of being with those in that context (called participant-observation), interviewing or talking with them, and analyzing what happens and what is produced in that context.

It is an umbrella term for a set of methods (including participant-observation, interviews, group interviews or focus groups, digital recording, etc.) employed with that goal, and most ethnographic projects use some subset of these methods given the needs of the specific project. In this sense, it is similar to other umbrella methodologies – like statistics – in that it encapsulates a wide array of different techniques depending on the context.

two woman chatting

One conducts ethnographic research to understand something about the lived experiences of a context. In the professional world, for example, ethnography is frequently useful in the following contexts:

  1. Market Research: When trying to understand customers and/or users in-depth
  2. Product Design: When trying to design or modify a product by seeing how people use it in action
  3. Organizational Communication and Development: When trying to understand a “people problem” within an organization.

In this article, I expound in more detail on situations where ethnographic research is useful in in professional settings.

Ethnographies are best understood through examples, so the table below include excellent example ethnographies and ethnographic researchers in various industries/fields:

Project Area
Computer Technology Development at Intel Market Research
Vacuum CMarket Research Examples Market Research
Psychiatric Wards in Healthcare Organizational Management
Self-Driving Cars at Nissan Artificial Intelligence
Training of Ethnography in Business Schools Education of Ethnography

These, of course, are not the only some situations where ethnography might be helpful. Ethnography is a powerful tool to develop a deep understanding of others’ experiences and to develop innovative and strategic insights.

Photo credit #1: Paolo Nicolello at https://unsplash.com/photos/hKVg7ldM5VU.

Photo credit #2: mentatdgt at https://www.pexels.com/photo/two-woman-chatting-1311518/.

What Is Data Science and Machine Learning? A Short Guide for the Unsure

 What is data science, and what is machine learning? This is a short overview for someone who has never heard of either.

What Is Data Science?

 In the abstract, data science is an interdisciplinary field that seeks to use algorithms to organize, process, and analyze data. It represents a shift towards using computer programing, specifically machine learning algorithms, and other, related computational tools to process and analyze data.

By 2008, companies starting using the term data scientists to refer to a growing group of professionals utilizing advanced computing to organize and analyze large datasets,[i] and thus from the get-go, the practical needs of professional contexts have shaped the field. Data science combines strands from computer science, mathematics (particularly statistics and linear algebra), engineering, the social sciences, and several other fields to address specific real-world data problems.

On a practical level, I consider a data scientist someone who helps develop machine learning algorithms to analyze data. Machine learning algorithms form the central techniques/tools around what constitutes data science. For me personally, if it does not involve machine learning, it is not data science.

What Is Machine Learning?

 Machine learning is a complex term: What to say that a machine “learns”? Overtime data scientists have provided many intricate definitions of machine learning, but its most basic, machine learning algorithms are algorithms that adapt/modify how their approach to a task based on new data/information overtime.

Herbert Simon provides a commonly used technical definition: “Learning denotes changes in the system that are adaptive in the sense that they enable the system to do the task or tasks drawn from the same population more efficiently and more effectively the next time.”[ii] As this definition implies, machine learning algorithms adapt by iteratively testing its performance against the same or similar data. Data scientists (and others) have developed several types of machine learning algorithms, including decision tree modeling, neural networks, logistic regression, collaborative filtering, support vector machines, cluster analysis, and reinforcement learning among others.

Data scientists generally split machine learning algorithms into two categories: supervised and unsupervised learning. Both involve training the algorithm to complete a given task but differ on how they test the algorithm’s performance. In supervised learning, the developer(s) provide a clear set of answers as a basis for whether the prediction is correct; while for unsupervised learning, whether the algorithm’s performance is much more open-ended. I liken the difference to be like the exams teachers gave us in school: some tests, like multiple choice exams, have clear, right and wrong answers or solutions, but other exams, like essays, are open-ended with qualitative means of determining goodness. Just like the nature of the curriculum determines the best type of exam, which type of learning to performs depends on the project context and nature of the data.

Here are four instances where machine learning algorithms are useful in these types of tasks:

  1. Autonomy: To teach computers to do a task without the direct aid/intervention of humans (e.g. autonomous vehicles)
  2. Fluctuation: Help machines adjust when the requirements or data change over time
  3. Intuitive Processing: Conduct (or assist in) tasks humans do naturally but are unable to explain how computationally/algorithmically (e.g. image recognition)
  4. Big Data: Breaking down data that is too large to handle otherwise

Machine learning algorithms have proven to be a very powerful set of tools. See this article for a more detailed discussion of when machine learning is useful.


[i] Berkeley School of Information. (2019). What is Data Science? Retrieved from https://datascience.berkeley.edu/about/what-is-data-science/.

[ii] Simon in Kononenko, I., & Kukar, M. (2007). Machine Learning and Data Mining. Elsevier: Philadelphia.

Photo credit #1: Frank V at https://unsplash.com/photos/zbLW0FG8XU8

Photo credit #2: Brett Jordan at https://unsplash.com/photos/HzOclMmYryc