This is the third and final part of three in our conversation. In Part 3, she described the skills and types of people necessary to build and assess artificial intelligence teams.
Dr. Gemma Galdon-Clavell is a leading voice on technology ethics and algorithmic accountability. She is the founder and CEO of Eticas, where her multidisciplinary background in the social, ethical, and legal impact of data-intensive technology allows her and her team to design and implement practical solutions to data protection, ethics, explainability, and bias challenges in AI. She has conceived and architected the Algorithmic Audit Framework which now serves as the foundation for Eticas’s flagship product, the Algorithmic Audit.
For my first interview in the Interview Series, I interviewed Astrid Countee. She is a business anthropologist and technologist with a background in anthropology, software engineering, and data science. She currently works as a user researcher at the peer-to-peer distributed company Holo, as a research associate at The Plenary, as an arts and education nonprofit, and as a co-founder of Missing Link Studios which distributes the This Anthro Life podcast.
If the audio does not play on your computer, you can download it here:
For my second interview in the Interview Series, I interviewed Schaun Wheeler. Schaun is co-founder of Aampe, a startup that embeds an active learning system into mobile apps to turn push notifications into part of the app’s user interface. Before he co-founded Aampe, Schaun was the data science lead for the award-winning Consumer Graph intelligence product at Valassis, a U.S. ad-tech firm. And before that he founded and directed the data science team at Success Academy Charter Schools in New York City. Then before that, Schaun was one of the first people to champion the use of statistical inference to understand massive unstructured data at the United States Department of the Army. Schaun has a Ph.D. in Cultural Anthropology from the University of Connecticut.
If the audio does not play on your computer, you can download it here:
For my third interview in the Interview Series, I interviewed Priyanka Dass Saharia. Priyanka Dass Saharia is an anthropologist working in tech startups, mostly seed to early venture stage in their product development. These companies broadly fall under the rubric of tech-based initiatives that aim to accelerate positive social, environmental and governance change. To do this, she routinely employs a variety of qualitative and quantitative techniques. In addition to anthropology, she has also studied economics and sociology in both India, where she grew up, and the United Kingdom, where she currently resides.
Over our conversation, we discussed the following:
Priyanka’s experiences as an anthropologist in tech, including her current work in fintech
Strategies for socially and environmentally equitable entrepreneurial investment
Skills anthropologists might need when working in tech and suggestions for how to develop them
Recommendations for how anthropologists can cultivate their quantitative thinking
To learn more about Priyanka Dass Saharia, check these out:
I interviewed Olga Shiyan as part of my Interview Series. In it, she discusses her anti-corruption work in Kazakhstan with Transparency International. In particular, she highlights various projects that have integrated anthropology with data science and statistics.
Olga Shiyan is the Executive Director of the Transparency International’s chapter in Kazakhstan. She specializes in advocacy, legislation and draft laws, and democratic training programs. For this, she has developed research methods that combine anthropology and data science and statistics. In 2019, the Kazakhstan Geographic Society awarder for a medal for anti-corruption work.
To learn more about Olga, feel free to check out the following:
For Part 8 in my Interview Series, I interviewed Scarleth Herrera, a digital anthropologist and founder of Orez Anthropological Research. In it, we discuss her experiences as starting her own digital anthropology research company, transitioning into artificial intelligence-related work, and experiences conducting anthropological research outside of academia.
Scarleth lives in South Florida. Her Orez Anthropological Research is a non-profit dedicated to the exploration and advancing the research of digital anthropology. She is also a Research Scholar at the Ronin Institute in New Jersey. Her current research focus is on the implications artificial intelligence may have on society in general but particularly low-income communities, but she is also passionate about issues facing immigrant communities in the United States.
I recently organized a professional group called EPIC Data Scientists + Ethnographers along with a few others who are both data scientists and ethnographers. Our goal is to form a virtual community to discuss ways to incorporate ethnography and data science, just like I strive to do on this website.
If you are interested in working with others on this or simply interested in learning more, feel free to join. Whether you are both a data scientist and ethnographer, only one of them, or neither, we would love to hear your perspective.
Thank you, EPIC, for helping to develop this and giving us a platform.
In a previous article, I have discussed the value of integrating data science and ethnography. On LinkedIn, people commented that they were interested and wanted to hear more detail on potential ways to do this. I replied, “I have found explaining how to conduct studies that integrate the two practically is easier to demonstrate through example than abstractly since the details of how to do it vary based on the specific needs of each project.”
In this article, I intend to do exactly that: analyze four innovative projects that in some way integrated data science and ethnography. I hope these will spur your creative juices to help think through how to creatively combine them for whatever project you are working on.
Synopsis:
Project:
How It Integrated Data Science and Ethnography:
Link to Learn More:
No Show Model
Used ethnography to design machine learning software
Used ethnography to understand how users make sense of and behave towards a machine learning system they encounter and how this, in turn, shapes the development of the machine learning algorithm(s)
A medical clinic at a hospital system in New York City asked me to use machine learning to build a show rate predictor in order to inform an improve its scheduling practices. During the initial construction phase, I used ethnography to both understand in more depth understand the scheduling problem the clinic faced and determine an appropriate interface design.
Through an ethnographic inquiry, I discovered the most important question(s) schedulers ask when scheduling their appointments. This was, “Of the people scheduled for a given doctor on a particular day, how many of them are likely to actually show up?” I then built a machine learning model to answer this exact question. My ethnographic inquiry provided me the design requirements for the data science project.
In addition, I used my ethnographic inquiries to design the interface. I observed how schedulers interacted with their current scheduling software, which gave me a sense for what kind of visualizations would work or not work for my app.
This project exemplifies how ethnography can be helpful both in the development stage of a machine learning project to determine machine learning algorithm(s) needs and on the frontend when communicating the algorithm(s) to and assessing its successfulness with its users.
As both an ethnographer and a data scientist, I was able to translate my ethnographic insights seamlessly into machine learning modeling and API specifications and also conducted follow-up ethnographic inquiries to ensure that what I was building would meet their needs.
Project 2: Cybersensitivity Study
I conducted this project with Indicia Consulting. Its goal was to explore potential connections between individuals’ energy consumption and their relationship with new technology. This is an example of using ethnography to explore and determine potential social and cultural patterns in-depth with a few people and then using data science to analyze those patterns across a large population.
We started the project by observing and interviewing about thirty participants, but as the study progressed, we needed to develop a scalable method to analyze the patterns across whole communities, counties, and even states.
Ethnography is a great tool for exploring a phenomenon in-depth and for developing initial patterns, but it is resource-intensive and thus difficult to conduct on a large group of people. It is not practical for saying analyzing thousands of people. Data science, on the other hand, can easily test the validity across an entire population of patterns noticed in smaller ethnographic studies, yet because it often lacks the granularity of ethnography, would often miss intricate patterns.
Ethnography is also great on the back end for determining whether the implemented machine learning models and their resulting insights make sense on the ground. This forms a type of iterative feedback loop, where data science scales up ethnographic insights and ethnography contextualizes data science models.
Thus, ethnography and data science cover each other’s weaknesses well, forming a great methodological duo for projects centered around trying to understand customers, users, colleagues, or other users in-depth.
Project 3: Facebook Newsfeed Folk Theories
In their study, Motahhare Eslami and her team of researchers conducted an ethnographic inquiry into how various Facebook users conceived of how the Facebook Newsfeed selects which posts/stories rise to the top of their feeds. They analyze several different “folk theories” or working theories by everyday people for the criteria this machine learning system uses to select top stories.
How users think the overall system works influences how they respond to the newsfeed. Users who believe, for example, that the algorithm will prioritize the posts of friends for whom they have liked in the past will often intentionally like the posts of their closest friends and family so that they can see more of their posts.
Users’ perspectives on how the Newsfeed algorithm works influences how they respond to it, which, in turn, affects the very data the algorithm learns from and thus how the algorithm develops. This creates a cyclic feedback loop that influences the development of the machine learning algorithmic systems over time.
Their research exemplifies the importance of understanding how people think about, respond to, and more broadly relate with machine learning-based software systems. Ethnographies into people’s interactions with such systems is a crucial way to develop this understanding.
In a way, many machine learning algorithms are very social in nature: they – or at least the overall software system in which they exist – often succeed or fail based on how humans interact with them. In such cases, no matter how technically robust a machine learning algorithm is, if potential users cannot positively and productively relate to it, then it will fail.
Ethnographies into the “social life” of machine learning software systems (by which I mean how they become a part of – or in some cases fail to become a part of – individuals’ lives) helps understand how the algorithm is developing or learning and determine whether they are successful in what we intended them to do. Such ethnographies require not only in-depth expertise in ethnographic methodology but also an in-depth understanding how machine learning algorithms work to in turn understand how social behavior might be influencing their internal development.
Project 4: Thing Ethnography
Elise Giaccardi and her research team have been pioneering the utilization of data science and machine learning to understand and incorporate the perspective of things into ethnographies. With the development of the internet of things (IOT), she suggests that the data from object sensors could provide fresh insights in ethnographies of how humans relate to their environment by helping to describe how these objects relate to each other. She calls this thing ethnography.
This experimental approach exemplifies one way to use machine learning algorithms within ethnographies as social processes/interactions in of themselves. This could be an innovative way to analyze the social role of these IOT objects in daily life within ethnographic studies. If Eslami’s work exemplifies a way to graft ethnographic analysis into the design cycle of machine learning algorithms, Giaccardi’s research illustrates one way to incorporate data science and machine learning analysis into ethnographies.
Conclusion
Here are four examples of innovative projects that involve integrating data science and ethnography to meet their respective goals. I do not intend these to be the complete or exhaustive account of how to integrate these methodologies but as food for thought to spur further creative thinking into how to connect them.
For those who, when they hear the idea of integrating data science and ethnography, ask the reasonable question, “Interesting but what would that look like practically?”, here are four examples of how it could look. Hopefully, they are helpful in developing your own ideas for how to combine them in whatever project you are working on, even if its details are completely different.
A friend and fellow professor, Dr. Eve Pinkser, asked me to give a guest lecture on quantitative text analysis techniques within data science for her Public Health Policy Research Methods class with the University of Illinois at Chicago on April 13th, 2020. Multiple people have asked me similar questions about how to use data science to analyze texts quantitatively, so I figured I would post my presentation for anyone interested in learning more.
It provides a basic introduction of the different approaches so that you can determine which to explore in more detail. I have found that many people who are new to data science feel paralyzed when trying to navigate through the vast array of data science techniques out there and unsure where to start.
Many of her students needed to conduct quantitative textual analysis as part of their doctoral work but struggled in determining what type of quantitative research to employ. She asked me to come in and explain the various data science and machine learning-based textual analysis techniques, since this was out of her area of expertise. The goal of the presentation was to help the PhD students in the class think through the types of data science quantitative text analysis techniques that would be helpful for their doctoral research projects.
Hopefully, it would likewise allow you to determine the type or types of text analysis you might need so that you can then look those up in more detail. Textual analysis, as well as the wider field of natural language processing within which it is a part of, is a quickly up-and-coming subfield within data science doing important and groundbreaking work.
This is a follow-up to my previous article, “What Is Ethnography,” outlining ways ethnography is useful in professional settings.
To recap, I defined ethnography as a research approach that seeks “to understand the lived experiences of a particular culture, setting, group, or other context by some combination of being with those in that context (also called participant-observation), interviewing or talking with them, and analyzing what is produced in that context.”
Ethnography is a powerful tool, developed by anthropologists and other social scientists over the course of several decades. Here are three types of situations in professional settings when I have found to use ethnography to be especially powerful:
1. To see the given product and/or people in action
2. When brainstorming about a design
3. To understand how people navigate complex, patchwork processes
Situation
#1: To See the Given Product and/or People in Action
Ethnography allows you to witness people in action: using your product or service, engaging in the type of activity you are interested, or in whatever other situation you are interested in studying.
Many other social science research methods involve creating an artificial environment in which to observe how participants act or think in. Focus groups, for example, involve assembling potential customers or users into a room: forming a synthetic space to discuss the product or service in question, and in many experimental settings, researchers create a simulated environment to control for and analyze the variables or factors they are interested in.
Ethnography, on the other hand, centers around observing and understanding how people navigate real-world settings. Through it, you can get a sense for how people conduct the activity for which you are designing a product or service and/or how people actually use your product or service.
For example, if you want to understand how people use GPS apps to get around, one can see how people use the app “in the wild:” when rushing through heavy traffic to get to a meeting or while lost in the middle of who knows where. Instead of hearing their processed thoughts in a focus group setting or trying to simulate the environment, you can witness what the tumultuousness yourself and develop a sense for how to build a product that helps people in those exact situations.
Situation
#2: When Brainstorming about a New Product Design
Ethnography is especially useful during the early stages of designing a product or service, or during a major redesign. Ethnography helps you scope out the needs of your potential customers and how they approach meeting said needs. Thus, it helps you determine how to build a product or service that addresses those needs in a way that would make sense for your users.
During such initial stages of product design, ethnography helps determine the questions you should be asking. Many have a tendency during these initial stages to construct designs based on their own perception of people’s needs and desires and miss what the customers’ or users’ do in fact need and desire. Through ethnography, you ground your strategy in the customers’ mindsets and experiences themselves.
The brainstorming stages of product development also require a lot of flexibility and adaptability: As one determines what the product or service should become, one must be open to multiple potential avenues. Ethnography is a powerful tool for navigating such ambiguity. It centers you on the users, their experiences and mindsets, and the context which they might use the product or service, providing tools to ask open-ended questions and to generate new and helpful ideas for what to build.
Situation
#3: To Understand How People Navigate Complex, Patchwork Processes
At a past company, I analyzed how customer service representatives regularly used the various software systems when talking with customers. Over the years, the company had designed and bought various software programs, each to perform a set of functions and with unique abilities, limitations, and quirks. Overtime, this created a complex web of interlocking apps, databases, and interfaces, which customer service representatives had to navigate when performing their job of monitoring customer’s accounts. Other employees described the whole scene as the “Wild West:” each customer service representative had to create their own way to use these software systems while on the phone with a (in many cases disgruntled) customer.
Many companies end up building such patchwork systems – whether of software, of departments or teams, of physical infrastructure, or something else entirely – built by stacking several iterations of development overtime until, they become a hydra of complexity that employees must figure out how to navigate to get their work done.
Ethnography is a powerful tool for making sense of such processes. Instead of relying on official policies for how to conduct various actions and procedures, ethnography helps you understand and make sense of the unofficial and informal strategies people use to do what they need. Through this, you can get a sense for how the patchwork system really works. This is necessary for developing ways to improve or build open such patchwork processes.
In the customer service research project, my task was
to develop strategies to improve the technology customer service representatives
used as they talked with customers. Seeing how representatives used the
software through ethnographic research helped me understand and focus the analysis
on their day-to-day needs and struggles.
Conclusion
Ethnography is a powerful tool, and the business world and other professional settings have been increasingly realizing this (c.f. this and this ). I have provided three circumstances where I have personally found ethnography to be invaluable. Ethnography allows you to experience what is happening on the ground and through that to shape and inform the research questions we ask and recommendations or products we build for people in those contexts.