Four Lessons in Time Management: What Graduate School Taught Me about Time Management

three round analog clocks and round gray mats

I am a Type-A personality who likes to do a variety of different activities yet cannot help but give each of them my all. Through this, I have learned a ton about time management. In particular, from 2017 to 2019, I was in graduate school at the University of Memphis while working as both a data scientist and a user researcher. I was easily working 70-90 hours a week.

Necessity is often the best teacher, and during this trial by fire, I figured out how to manage my time efficiently and effectively. Here are four personal lessons I learned for how to manage time well:

Lesson #1 Rest Effectively
Lesson #2 Work in Short-Term Sprints
Lesson #3 Complete Tasks during the Optimal Time of Day
Lesson #4 Rotating between Types of Tasks to Replenish Myself

Lesson #1: Rest Effectively

Developing an effective personal rhythm in which I had time to both work and relax throughout the day was necessary to ensure that I could work productively.

When many people think about time management (or at least when I do), they often focus on strategies/techniques to be productive during work time. Managing one’s time while working is definitely important, but I have found that resting and recuperating effectively is by far the most important single practice to cultivate to work productively.

Developing an effective personal rhythm in which I had time to both work and relax throughout the day was necessary to ensure that I could work effectively.

woman doing yoga meditation on brown parquet flooring

Several different activities help me relax: taking walks, exercising, hanging out with friends and colleagues, reading, watching videos, etc. People have a variety of ways to relax, so maybe some of those are great for you, and maybe you do something else entirely.

Generally, to relax I chose an activity that contrasted and complemented the work I had just been doing. For example, if my work was interviewing people – which I did frequently as a user researcher – then I would unwind with quiet, solitary tasks like walking or reading, but if my work was solitary like programming or writing a paper, I might unwind by socializing with others. Relaxing with a different type of activity as my work would allow me to rest and rejuvenate from the specific strains of that work activity.

I have seen a tendency in some of U.S. work/business culture to constantly push to do more. The goal is usually productivity – that is to get more done – and it makes sense to think that doing more will, well, lead to getting more things done.

That is true to a point, though, or at least to me. There comes a point when trying to do more actually prevents me from getting more done. Instead, taking enough time to rest and recuperate unwinds my mind so that when I am working, I am ready to go. This leads to greater productivity across all counts:

  1. Quantitatively: I can complete a greater number of tasks
  2. Qualitatively: The tasks I complete are of better quality
  3. Efficiency: It takes me a lot less time to complete the same task

I think the idea that doing more work leads to greater productivity is a major false myth in the modern U.S. workforce. Instead, it leads to overwork, stress, and inefficiency, stifling genuine productivity.

Self-care through incorporating rest into my work rhythm has not only been necessary for my mental health but also to be a productive worker. In discussions around self-care, I have often a juxtaposition between being more productive and taking care of oneself, but those two concerns reinforce each other not contradict each other. Overworking without taking enough time to recuperate prevents me from being an effective and productive human worker. Instead, the question is how to cultivate life-giving and rejuvenating practices and disciplines so that I can become productive and maintain so.

Lesson #2: Work in Short-Term Sprints

I developed a practice of completing tasks in twenty-five-minute chunks. I would set the timer for twenty-five-minutes and work intensely without stopping on the given task/project until the time was up. (My technique has some similarities with the Pomodoro Technique, but without as many rules or requirements.) I realized that twenty-five-minutes was how long I could mentally work continuously on a single task without thinking about something else or needing a break. After that time, I would start to get tired and inefficient, so giving myself a break would let me unwind and rejuvenate.

After one of these twenty-five-minute sprints, I would take a break of at least five minutes: walk around, watch an interesting video, go talk with a colleague or friend, whatever I needed to do to unwind. These breaks were the time my brain would need to process what I was doing and reenergize for the next task. Given that my day would be made up of several of these twenty-five-minute sprints, for the first one or two, I might take a five minute break, but a few more, I might take a longer break as I had done more to unwind from.

A crucial skill for this practice has been successfully breaking down the given project to complete in the timed chunks. For some projects, I would designate a short-term task or goal to complete in the twenty-five-minutes. With my course readings, for example, I generally had to submit a summary and analysis of the readings. Thus, my goal during each twenty-five-minute sprint would be to finish one article or chapter – both reading it and writing the summary and analysis. I would start by reading the most significant subsections, generally the introduction and conclusion, summarizing and analyzing it as I read. That generally took up half of my twenty-five-minutes, so in whatever remaining time I had left, I would read the remaining sections.

This provided enough time to get a sense for the reading’s argument and complete the assignment, even in the off-chance that I did not have time to finish reading the entire article. In only twenty-five-minutes, I would knock out a whole reading, including my summary and analysis: one less task to worry about. Spending twenty-five-minutes a day is not that much of a burden either. Doing this, I would complete all the readings for my courses within the first few weeks of the semester, opening time over the next several months when my other work would pick up.

aerial photography of mountain ridge

I could not split all activities into short-term tasks to complete in twenty-five-minutes, though. For those I could not, the trick was to estimate how much time an overall task would take. For example, if my supervisor gave me a month to complete a project, I would then calculate how many twenty-five-minute slots I would need per day given how many total hours I would likely need to spend on the project.

Data science projects are notoriously nonlinear, meaning that I could just about never break them down into sets of twenty-five-minute tasks, but rather almost always had to just figure out how much total time to budget like this. The various parts of a data science project – like data cleaning, building the model(s), and then improving/refining said model – could take widely different amount of times to complete and often fed into each other anyways. The first data science projects were always the hardest to determine how long they would take, but after doing many of them, I developed an intuitive sense of how much time to budget.

toddler's standing in front of beige concrete stair

The fear of a blank page and resulting procrastination were major issues I had to overcome when working on a project. At the beginning of the project, before I had broken down the task and determined the best strategy for how to complete it, focusing could be difficult. If I was not careful, the stress of the blank page or complete openness of the new project could cause me to become distracted and want to do something else instead. In more extreme cases, this could lead to procrastinating in getting started at all.

To get my ideas on paper, during the first twenty-five-minute sprint of a new task, I would look through all my materials and brainstorm how I would complete the task. Through this, I would develop an initial to do list of items that I could do in the ensuing sprints. Even though my to do list almost always changed overtime, this allowed me to get started. The most important caveat was to make sure I did that planning session when I was able to handle such an open-ended task (something I discuss in more detail in Lesson #3).

I also addressed my tendency to procrastinate by creating my own stricter deadlines for when a project was due. Extreme procrastination (like putting off starting or completing something until the last minute when you must rush to complete a task in the last several hours before its deadline) would destroy my productivity. Having to work in a mad rush would prevent me from having the balance between work and rest I discussed in Lesson #1 necessary to work productively. And when I have a lot of tasks, rushing last minute for one project would prevent me from working ahead on future projects, which would have then caused me to fall behind on them and create a vicious cycle of procrastination.

Thus, I would set my own deadline a week or two prior to a project’s actual deadline. For example, if I had four weeks to write an assignment, I would set my own deadline of three weeks for a presentable draft, and no matter what, I would meet this deadline. I would treat this like my actual deadline and never missed it. This presentable draft may not be perfect or amazing yet but something that in a pinch I would feel comfortable turning in: a solid B or B- quality version, not the A or A+ awesomeness my perfectionist self prefers. I might need to proofread once or twice to smooth out some kinks, but it has all the basic components of the task or assignment done. That way, if I became too busy with other projects to do that proofreading, it was good enough quality that I could still turn it in without editing in a pinch.

In the remaining week, I would then work out those minor issues, combing it a few more times to make it top quality, but if another, higher priority project or issue arose during that final week needing more of my attention than I anticipated, I could still have something to turn in. By making sure I stayed ahead with an adequate draft, I never had to worry about falling behind and rushing to finish as assignment last minute, and being a week or so ahead provided a cushion or shock absorber to handling any unforeseeable issues without falling behind. Through this, I never missed a single deadline despite working multiple jobs and being a full-time student.

Lesson #3: Complete Tasks during the Optimal Time of Day

I have found that certain types of activities are easier for me during certain times of the day. For example, being a morning person, I do my best work first thing in the morning. Thus, I would perform my most open-ended, creative, and strategic types of tasks – like brainstorming and breaking down a new project, solving an open-ended problem, and writing an essay or report – then. In the early afternoon, I would try to schedule any meetings and interviews (if that worked in the other people’s schedules as well of course), and in the late afternoon and evening, I would complete more menial, plug-and-chug aspects of a project that need less intense mental thought and more rote implementation of what I came up with that morning, like writing the code of an algorithm I had mapped out in the morning or proofreading a paper I already wrote. This would ensure that I would be fresh and efficient when doing the complex, open-ended tasks and not wasting my time and energy trying to force myself to complete such tasks during the times of the day when I am naturally tired, slower, and less efficient.

Lesson #4: Leveraging Different Types of Tasks to Replenish Myself

As both a data scientist and anthropologist, I have had to do a wide variety of tasks, using many different skills, ranging from talking and interviewing people to math proofs and programming to scholarly and non-fiction writing. This variety has been something I could use to replenish myself. Each of these activities is in of itself stimulating to me, but doing one of them exclusively for long periods of time would become draining after a while.

In agriculture, certain crops use up certain nutrients in the soil (like corn depletes nitrogen particularly strongly), so farmers will often rotate between crops to replenish the nutrients in the soil from the previous crop. Likewise, I found rotating between several different types of activities helpful for rejuvenating and replenishing my mind from the last activity.

If I had to do a series of very logical tasks like math or programming, I might replenish with a social task as my next activity like interviewing or meeting with people, or if I interviewed people for several hours, I would next break from that by doing something solitary like programming or writing. I would use these rotations strategically to rest from one activity while still practicing and developing other skill sets.

Conclusion

These are the lessons I learned for how to sustain myself while working 80-100-hour weeks. The first lesson was crucial: developing an effective rhythm between work and rest that enabled me to work productively, efficiently, and sustainably. The other three were my specific strategies for how I created that rhythm. I developed and refined them during intense, busy periods of my life in order to still produce high quality work while maintaining my sanity. Hopefully, they are helpful food for thought for anyone else trying to develop his or her own time-management strategies.

Photo credit #1: Karim MANJRA at https://unsplash.com/photos/dtSCKE9-8cI

Photo credit #2: Jared Rice at https://unsplash.com/photos/NTyBbu66_SI

Photo credit #3: Carl Heyerdahl at https://unsplash.com/photos/KE0nC8-58MQ

Photo credit #4: Allie Smith at https://unsplash.com/photos/eXGSBBczTAY

Photo credit #5: NeONBRAND at https://unsplash.com/photos/KYxXMTpTzek

Photo credit #6: Alex Siale at https://unsplash.com/photos/qH36EgNjPJY

Photo credit #7: Jukan Tateisi at https://unsplash.com/photos/bJhT_8nbUA0

Photo credit #8: Ksenia Makagonova at https://unsplash.com/photos/Vq-EUXyIVY4

Photo credit #9: Dawid Zawila at https://unsplash.com/photos/-G3rw6Y02D0

Photo credit #10: Dennis Jarvis at https://www.flickr.com/photos/archer10/3555040506/

Methodological Complementarianism: Being the Mix in Mixed Methods

photo of women at the meeting
Photo by RF._.studio on Pexels.com

I wrote this essay for my midterm for a course I took on conducting program evaluation as an anthropologist taught by Dr. Michael Duke at the University of Memphis Anthropology Master’s program. In it, I synthesize Donna Mertens’s discussion of employing mixed methods research for program evaluation work in her book, Mixed Methods Design in Evaluation, as a way to present the need for what I call methodological complementarianism.

Methodological complementarianism involves complementing those on the team one is working with by advancing for the complementary perspectives that the team needs. When conducting transdisciplinary work as applied anthropologists, instead of explicitly or implicitly seeking to maintain a “pure” anthropological approach, I think we should have a greater willingness to produce something anew in that environment, even if it no longer fits the “pure” boundaries of proper anthropology or ethnography but rather some kind of hybrid emerging out of the needs of the situation. Methodological complementarianism is one practical way to do that I have been exploring.

What Is Data Science and Machine Learning? A Short Guide for the Unsure

 What is data science, and what is machine learning? This is a short overview for someone who has never heard of either.

What Is Data Science?

 In the abstract, data science is an interdisciplinary field that seeks to use algorithms to organize, process, and analyze data. It represents a shift towards using computer programing, specifically machine learning algorithms, and other, related computational tools to process and analyze data.

By 2008, companies starting using the term data scientists to refer to a growing group of professionals utilizing advanced computing to organize and analyze large datasets,[i] and thus from the get-go, the practical needs of professional contexts have shaped the field. Data science combines strands from computer science, mathematics (particularly statistics and linear algebra), engineering, the social sciences, and several other fields to address specific real-world data problems.

On a practical level, I consider a data scientist someone who helps develop machine learning algorithms to analyze data. Machine learning algorithms form the central techniques/tools around what constitutes data science. For me personally, if it does not involve machine learning, it is not data science.

What Is Machine Learning?

 Machine learning is a complex term: What to say that a machine “learns”? Overtime data scientists have provided many intricate definitions of machine learning, but its most basic, machine learning algorithms are algorithms that adapt/modify how their approach to a task based on new data/information overtime.

Herbert Simon provides a commonly used technical definition: “Learning denotes changes in the system that are adaptive in the sense that they enable the system to do the task or tasks drawn from the same population more efficiently and more effectively the next time.”[ii] As this definition implies, machine learning algorithms adapt by iteratively testing its performance against the same or similar data. Data scientists (and others) have developed several types of machine learning algorithms, including decision tree modeling, neural networks, logistic regression, collaborative filtering, support vector machines, cluster analysis, and reinforcement learning among others.

Data scientists generally split machine learning algorithms into two categories: supervised and unsupervised learning. Both involve training the algorithm to complete a given task but differ on how they test the algorithm’s performance. In supervised learning, the developer(s) provide a clear set of answers as a basis for whether the prediction is correct; while for unsupervised learning, whether the algorithm’s performance is much more open-ended. I liken the difference to be like the exams teachers gave us in school: some tests, like multiple choice exams, have clear, right and wrong answers or solutions, but other exams, like essays, are open-ended with qualitative means of determining goodness. Just like the nature of the curriculum determines the best type of exam, which type of learning to performs depends on the project context and nature of the data.

Here are four instances where machine learning algorithms are useful in these types of tasks:

  1. Autonomy: To teach computers to do a task without the direct aid/intervention of humans (e.g. autonomous vehicles)
  2. Fluctuation: Help machines adjust when the requirements or data change over time
  3. Intuitive Processing: Conduct (or assist in) tasks humans do naturally but are unable to explain how computationally/algorithmically (e.g. image recognition)
  4. Big Data: Breaking down data that is too large to handle otherwise

Machine learning algorithms have proven to be a very powerful set of tools. See this article for a more detailed discussion of when machine learning is useful.


[i] Berkeley School of Information. (2019). What is Data Science? Retrieved from https://datascience.berkeley.edu/about/what-is-data-science/.

[ii] Simon in Kononenko, I., & Kukar, M. (2007). Machine Learning and Data Mining. Elsevier: Philadelphia.

Photo credit #1: Frank V at https://unsplash.com/photos/zbLW0FG8XU8

Photo credit #2: Brett Jordan at https://unsplash.com/photos/HzOclMmYryc

Recently Published Article: “Anthropology by Data Science”

tea set and newspaper placed on round table near comfortable chair
Photo by Ekrulila on Pexels.com

I am pleased to announce that the Annals of Anthropological Practice has accepted my article “Anthropology by Data Science.” https://anthrosource.onlinelibrary.wiley.com/doi/10.1111/napa.12169. In it, I reflect on the relationship anthropologist have cultivated with data science as a discipline and the importance of integrating machine learning techniques into ethnographic practice.

Annals of Anthropological Practice is overseen by the National Association for the Practice of Anthropology (NAPA) within the American Anthropological Association. Thank you, NAPA, for publishing my article and thank you to all the unnamed editors and reviewers in the process.

Interdisciplinary Anthropology and Data Science Master’s Thesis: A Quick and Dirty Project Summary

This is a quick and dirty summary of my master’s practicum research project with Indicia Consulting over the summer of 2018. For anyone interested in more detail, here is a more detailed report, and here is the final report with Indicia. 

Background

My practicum was the sixth stage of a several year-long research project. The California Energy Commission commissioned this larger project to understand the potential relationship between individual energy consumption and technology usage. In stages one through five, we isolated certain clusters of behavior and attitudes around new technology adoption – which Indicia called cybersensitivity – and demonstrated that cybersensitivity tended to associate with a willingness to adopt energy-saving technology like smart meters.

This led to a key question: How can one identify cybersensivity among a broader population such as a community, county, or state? Answering this question was the main goal of my practicum project.

In the past stages of the research project, the team used ethnographic research to establish criteria for whether someone was a cybersensitive based on several hours of interviews and observations about their technology usage. These interviews and observations certainly helped the research team analyze behavioral and attitudinal patterns, determine what patterns were significant, and develop those into the concept of cybersensitivity, but they are too time- and resource-intensive to perform with an entire population. One generally does not have the ability to interview everyone in a community, county, or state. I sought to address this directly in my project.

TaskTimelineTask NameResearch TechniqueDescription
Task 1June 2015-Sept 2018General Project TasksAdministrative (N/A)Developed project scope and timeline, adjusting as the project unfolds
Task 2July 2015 – July 2016Documenting and analyzing emerging attitudes, emotions, experiences, habits, and practices around technology adoptionSurveyConducted survey research to observe patterns of attitudes and behaviors among cybersensitives/awares.
Task 3Sept 2016 – Dec 2016Identifying the attributes and characteristics and psychological drivers of cybersensitivesInterviews and Participant-ObservationConducted in-depth interviews and observations coding for psych factor, energy consumption attitudes and behaviors, and technological device purchasing/usage.
Task 4*Sept 2016 – July 2017Assessing cybersensitives’ valence with technologyStatistical AnalysisTested for statistically significant differences in demographics, behaviors, and beliefs/attitudes between cyber status groups
Task 5Aug 2017 – Dec 2018  Developing critical insights for supporting residential engagement in energy efficient behaviorsStatistical AnalysisAnalyzed utility data patterns of study participants, comparing it with the general population.
Task 6March 2018 – Aug 2018Recommending an alternative energy efficiency potential modelDecision Tree ModelingConstructed decision tree models to classify an individual’s cyber status

Project Goal

The overall goal for the project was to produce a scalable method to assess whether someone exhibits cybersensitivity based on data measurable across an entire population. In doing this, the project also helped address the following research needs:

  1. Created a method to further to scale across a larger population, assessing whether cybersensitives were more willing to adopt energy saving technologies across a community, county, or state
  2. Provided the infrastructure to determine how much promoting energy-saving campaigns targeting cybersensitives specifically would reduce energy consumption in California
  3. Helped the California Energy Commission determine the best means to reach cybersensitives for specific energy-saving campaigns

The Project

I used machine learning modeling to create a decision-making flow to isolate cybersensitives in a population. Random forests and decision trees produced the best models for Indicia’s needs: random forests in accuracy and robustness and decision trees in human decipherability. Through them, I created a programmable yet human-comprehensible framework to determine whether an individual is cybersensitive based on behaviors and other characteristics that an organization could be easily assess within a whole population. Thus, any energy organization could easily understand, replicate, and further develop the model since it was both easy for humans to read and encodable computationally. This way organizations could both use and refine it for their purposes.

Conclusion

This is a quick overview of my master’s practicum project. For more details on what modeling I did, how I did it, what results it produced, and how it fit within the wider needs of the multi-year research project, please see my full report.

I really appreciated the opportunity it posed to get my hands dirty integrating ethnography and data science to help address a real-world problem. This summary only scratches the surface of what Indicia did with the Californian Energy Commission to encourage sustainable energy usage societally. Hopefully, though, it will inspire you to integrate ethnography and data science to address whatever complex questions you face. It certainly did for me.

Thank you to Susan Mazur-Stommen and Haley Gilbert for your help in organizing and completing the project. I would like to thank my professorial committee at the University of Memphis – Dr. Keri Brondo, Dr. Ted Maclin, Dr. Deepak Venugopal, and Dr. Katherine Hicks – for their academic support as well.

The Anthropology of Machine Learning

In the spring of 2018, I researched how anthropologists and related social scholars have analyzed data science and machine learning for my Master’s in Anthropology at the University of Memphis. For the project, I assessed the anthropological literature on data science and machine learning to date and explore potential connections between anthropology and data science, based on my perspective as a data scientist and anthropologist. Here is my final report.

Thank you, Dr. Ted Maclin, for your help overseeing and assisting this project.

Response-ability Conference Talk

On May 21st, Astrid Countee and I presented at the 2021 Response-ability Conference. We discussed strategies for leveraging data science and anthropology in the tech sector to help address societal issues. The Response-ability’s overall goal was to explore how anthropologists and software specialists in the tech sector to understand and tackle social issues.

Here is an abstract for Astrid’s and my talk:

In the coming months, Response-ability plans to publish our presentation, so if you are interested in watching it, please stay tuned until then. When they make the videos accessible, they should post them here: https://response-ability.tech/2021-summit-videos/.

I appreciated the whole experience. Thank you to everyone who helped make the conference happen, and Astrid for doing this talk with me.

Anthropology by Data Science: The EPIC Project with Indicia Consulting as an Exploratory Case Study

This is my practicum report with Indicia Consulting. In lieu of a master’s thesis, the University of Memphis Department of Anthropology required that we master’s students conduct a practicum project. For this, we had to partner with an organization and complete a 300+ hour anthropological research project based on the organization’s needs and our skills and interests. My practicum project was Indicia’s EPIC Project with the California Energy Commission (see this link and this link for more details on the EPIC Project). In this report, I outline potential ways to integrate ethnographic/anthropological and data science research in professional settings.

In November 2019, the American Anthropological Association’s Committee for the Anthropology of Science, Technology, and Computing (CASTAC) awarded me the David Hakken Graduate Student Prize for innovative science and technology scholarship.

Full Report:

Loader Loading…
EAD Logo Taking too long?

Reload Reload document
| Open Open in new tab

Download [1.56 MB]

The Anthropology Department also required that you publicly present your practicum research to the University of Memphis campus. This PowerPoint summarizes my practicum project. If you are not keen to read the 99 page full report, this is a much shorter alternative:

If you are interested in learning more about the project, please check out the following:

  1. Indicia Consulting’s Final Research Report with the California Energy Commission
  2. My Presentation at the 2019 Memphis Data Conference for Data Scientists Specifically

Computerized Knowledge Production: Machine Learning Models as Social Actors

The following is a presentation I gave at the Society for Applied Anthropology’s 2018 annual conference in Philadelphia, PA. In it, I describe how I think anthropologists should understand, analyze, and relate to machine learning and data science.

Memphis Data Conference: Anthropology by Data Science: The EPIC Project with Indicia Consulting as an Exploratory Case Study

Below is a talk I gave at the 2019 Memphis Data conference, organized by the University of Memphis to discuss data science research in the Memphian community. In this presentation, I summarize a project I did with Indicia Consulting that integrated data science and ethnography.

Check out these articles for a more detailed description of the projects: a short project summary, my master’s thesis about the project, and Indicia’s full report.