Designing Machine Learning Products Anthropologically: Building Relatable Machine Learning

Loader Loading…
EAD Logo Taking too long?

Reload Reload document
| Open Open in new tab

Download [2.38 MB]

How do we build relatable machine learning models that regular people can understand? This is a presentation about how design principles apply to the development of machine learning systems. Too often in data science, machine learning software is not built with regular people who will interact with it in mind.

I argue that in order to make machine learning software relatable, we need to use design thinking to intentionally build in mechanisms for users to form their own mental models of how the machine learning software works. Failing to include theses helps cultivate the common sense that machine learning is a black box for users.

I gave three different versions of this talk at Quant UX Con on June 8th, 2022, the Royal Institute of Anthropology’s annual conference on June 10th, 2022, and Google’s AI + Design Tooling Research Symposium on August 5th, 2022.

I hope you find it interesting and feel free to share any thoughts you might have.

Thank you for the conference and talk organizers for making this happen, and I appreciate all the insightful conversations I had about the role of design thinking in building relatable machine learning.

Rethinking Ethnography in Anthropology

This is a follow-up on my previous article about the difference between anthropology and ethnography. In this article, I discuss recent trends within anthropology to either revitalize ethnography and/or rethink its status as the primary research methodology within the discipline.

We anthropologists should consider expanding beyond the ethnographic toolkit. That could involve redefining what it means to conduct ethnography in such a way that includes other types of practices outside of the traditional ethnographic toolkit and/or rethinking the role of ethnography as our primary methodology.

For context, ethnography has been the primary tool within the discipline for the last several decades. I would define ethnography as a methodological approach that seeks to holistically understand and express the lived experiences of those in a particular sociocultural context(s) (see this article and this paper). Ethnography conventionally entails a specific set of qualitative methodologies that help to understand and analyze these lived experiences, including participant observation, interviews, qualitative coding, and so on. Anthropologists and other ethnographers have built this set of practices because they are excellent at capturing people’s lived experiences, and I agree that they are powerful for that.

I do not, however, believe that these are the only potential ways to do that. For me, ethnography is an orientation, an approach that seeks to make sense of the social world by focusing on the lived experiences of others, not necessarily some collection of qualitative methods. Seeing ethnography as an orientation, for example, would enable ethnographers to use data science and machine learning tools within ethnographies (see this and this).

My perspective here exemplifies the first way some anthropologists have sought to expand beyond the traditional ethnographic toolkit: by redefining ethnography. For us, viewing ethnography as a specific set of qualitative research techniques pigeonholes what ethnography can be. Although these techniques are powerful and useful, their exclusive deployment within anthropology stifles what ethnography can become.

Other anthropologists will seek to expand beyond this toolkit by advocating for non-ethnographic anthropological research. For them, anthropologists should cultivate other research practices in addition to or sometimes instead of ethnography. I am passionate about applying this specifically to data science and machine learning, and Morten Axel Pedersen is a counterpart to me who in this specific area. He thinks anthropologists should move beyond ethnographic research, which could include incorporating data science and machine learning research (see his talk as an example). Similar to me, he wants to see more utilization of data science and machine learning within anthropology, but he presents this as an alternative to doing ethnographic research not as a potential part of ethnographic research like I do.

The difference between the two approaches is subtle: the first advocates for reimaging ethnography and the second for reimagining anthropology and anthropological research while potentially keeping ethnography the same. On a practical level, though, they are not that different. Not only are they not mutually exclusive: one can seek to redefine ethnography and ethnography’s hold within anthropology. But they each also have their place in seeking when encouraging the expansion of the anthropological toolkit. In some situations, the promotion of redefining ethnography beyond its traditional qualitative practices is most beneficial, and other times, advocating for non-ethnographic forms of research would be.

Photo credit #1: StockSnap at https://pixabay.com/photos/people-girls-women-students-2557396/

Photo credit #2: hosny_salah at https://pixabay.com/photos/woman-hijab-worker-factory-worker-5893942/

Photo credit #3: Jack Douglass at https://unsplash.com/photos/ouZAz-3vh7I

EPIC Data Scientists + Ethnographers Group

I recently organized a professional group called EPIC Data Scientists + Ethnographers along with a few others who are both data scientists and ethnographers. Our goal is to form a virtual community to discuss ways to incorporate ethnography and data science, just like I strive to do on this website.

If you are interested in working with others on this or simply interested in learning more, feel free to join. Whether you are both a data scientist and ethnographer, only one of them, or neither, we would love to hear your perspective.

Thank you, EPIC, for helping to develop this and giving us a platform.

Photo credit: deepak pal at https://www.flickr.com/photos/158301585@N08/46085930481/

Four Innovative Projects that Integrated Data Science and Ethnography

In a previous article, I have discussed the value of integrating data science and ethnography. On LinkedIn, people commented that they were interested and wanted to hear more detail on potential ways to do this. I replied, “I have found explaining how to conduct studies that integrate the two practically is easier to demonstrate through example than abstractly since the details of how to do it vary based on the specific needs of each project.”

In this article, I intend to do exactly that: analyze four innovative projects that in some way integrated data science and ethnography. I hope these will spur your creative juices to help think through how to creatively combine them for whatever project you are working on.

Synopsis:

Project:How It Integrated Data Science and Ethnography:Link to Learn More:
No Show ModelUsed ethnography to design machine learning softwarehttps://ethno-data.com/show-rate-predictor/
Cybersensitivity StudyUsed machine learning to scale up the scope of an ethnographic inquiry to a larger populationhttps://ethno-data.com/masters-practicum-summary/
Facebook Newsfeed Folk TheoriesUsed ethnography to understand how users make sense of and behave towards a machine learning system they encounter and how this, in turn, shapes the development of the machine learning algorithm(s)https://dl.acm.org/doi/10.1145/2858036.2858494
Thing EthnographyUsed machine learning to incorporate objects’ interactions into ethnographic researchhttps://dl.acm.org/doi/10.1145/2901790.2901905 and https://www.semanticscholar.org/paper/Things-Making-Things%3A-An-Ethnography-of-the-Giaccardi-Speed/2db5feac9cc743767fd23aeded3aa555ec8683a4?p2df

Project 1: No Show Model

A medical clinic at a hospital system in New York City asked me to use machine learning to build a show rate predictor in order to inform an improve its scheduling practices. During the initial construction phase, I used ethnography to both understand in more depth understand the scheduling problem the clinic faced and determine an appropriate interface design.

Through an ethnographic inquiry, I discovered the most important question(s) schedulers ask when scheduling their appointments. This was, “Of the people scheduled for a given doctor on a particular day, how many of them are likely to actually show up?” I then built a machine learning model to answer this exact question. My ethnographic inquiry provided me the design requirements for the data science project.  

In addition, I used my ethnographic inquiries to design the interface. I observed how schedulers interacted with their current scheduling software, which gave me a sense for what kind of visualizations would work or not work for my app.

This project exemplifies how ethnography can be helpful both in the development stage of a machine learning project to determine machine learning algorithm(s) needs and on the frontend when communicating the algorithm(s) to and assessing its successfulness with its users.

As both an ethnographer and a data scientist, I was able to translate my ethnographic insights seamlessly into machine learning modeling and API specifications and also conducted follow-up ethnographic inquiries to ensure that what I was building would meet their needs.

Project 2: Cybersensitivity Study

I conducted this project with Indicia Consulting. Its goal was to explore potential connections between individuals’ energy consumption and their relationship with new technology. This is an example of using ethnography to explore and determine potential social and cultural patterns in-depth with a few people and then using data science to analyze those patterns across a large population.

We started the project by observing and interviewing about thirty participants, but as the study progressed, we needed to develop a scalable method to analyze the patterns across whole communities, counties, and even states.

Ethnography is a great tool for exploring a phenomenon in-depth and for developing initial patterns, but it is resource-intensive and thus difficult to conduct on a large group of people. It is not practical for saying analyzing thousands of people. Data science, on the other hand, can easily test the validity across an entire population of patterns noticed in smaller ethnographic studies, yet because it often lacks the granularity of ethnography, would often miss intricate patterns.

Ethnography is also great on the back end for determining whether the implemented machine learning models and their resulting insights make sense on the ground. This forms a type of iterative feedback loop, where data science scales up ethnographic insights and ethnography contextualizes data science models.

Thus, ethnography and data science cover each other’s weaknesses well, forming a great methodological duo for projects centered around trying to understand customers, users, colleagues, or other users in-depth.

Project 3: Facebook Newsfeed Folk Theories

In their study, Motahhare Eslami and her team of researchers conducted an ethnographic inquiry into how various Facebook users conceived of how the Facebook Newsfeed selects which posts/stories rise to the top of their feeds. They analyze several different “folk theories” or working theories by everyday people for the criteria this machine learning system uses to select top stories.

How users think the overall system works influences how they respond to the newsfeed. Users who believe, for example, that the algorithm will prioritize the posts of friends for whom they have liked in the past will often intentionally like the posts of their closest friends and family so that they can see more of their posts.

Users’ perspectives on how the Newsfeed algorithm works influences how they respond to it, which, in turn, affects the very data the algorithm learns from and thus how the algorithm develops. This creates a cyclic feedback loop that influences the development of the machine learning algorithmic systems over time.

Their research exemplifies the importance of understanding how people think about, respond to, and more broadly relate with machine learning-based software systems. Ethnographies into people’s interactions with such systems is a crucial way to develop this understanding.

In a way, many machine learning algorithms are very social in nature: they – or at least the overall software system in which they exist – often succeed or fail based on how humans interact with them. In such cases, no matter how technically robust a machine learning algorithm is, if potential users cannot positively and productively relate to it, then it will fail.

Ethnographies into the “social life” of machine learning software systems (by which I mean how they become a part of – or in some cases fail to become a part of – individuals’ lives) helps understand how the algorithm is developing or learning and determine whether they are successful in what we intended them to do. Such ethnographies require not only in-depth expertise in ethnographic methodology but also an in-depth understanding how machine learning algorithms work to in turn understand how social behavior might be influencing their internal development.

Project 4: Thing Ethnography

Elise Giaccardi and her research team have been pioneering the utilization of data science and machine learning to understand and incorporate the perspective of things into ethnographies. With the development of the internet of things (IOT), she suggests that the data from object sensors could provide fresh insights in ethnographies of how humans relate to their environment by helping to describe how these objects relate to each other. She calls this thing ethnography.

This experimental approach exemplifies one way to use machine learning algorithms within ethnographies as social processes/interactions in of themselves. This could be an innovative way to analyze the social role of these IOT objects in daily life within ethnographic studies. If Eslami’s work exemplifies a way to graft ethnographic analysis into the design cycle of machine learning algorithms, Giaccardi’s research illustrates one way to incorporate data science and machine learning analysis into ethnographies.

Conclusion

Here are four examples of innovative projects that involve integrating data science and ethnography to meet their respective goals. I do not intend these to be the complete or exhaustive account of how to integrate these methodologies but as food for thought to spur further creative thinking into how to connect them.

For those who, when they hear the idea of integrating data science and ethnography, ask the reasonable question, “Interesting but what would that look like practically?”, here are four examples of how it could look. Hopefully, they are helpful in developing your own ideas for how to combine them in whatever project you are working on, even if its details are completely different.

Photo credit #1: StartupStockPhotos at https://pixabay.com/photos/startup-meeting-brainstorming-594090/

Photo credit #2: DarkoStojanovicat at https://pixabay.com/photos/medical-appointment-doctor-563427/  

Photo credit #3: NASA at https://unsplash.com/photos/Q1p7bh3SHj8  

Photo credit #4: Kon Karampelas at https://unsplash.com/photos/HUBofEFQ6CA

Photo credit #5: Pixabay at https://www.pexels.com/photo/app-business-connection-device-221185/  

Recently Published Article: “Anthropology by Data Science”

tea set and newspaper placed on round table near comfortable chair
Photo by Ekrulila on Pexels.com

I am pleased to announce that the Annals of Anthropological Practice has accepted my article “Anthropology by Data Science.” https://anthrosource.onlinelibrary.wiley.com/doi/10.1111/napa.12169. In it, I reflect on the relationship anthropologist have cultivated with data science as a discipline and the importance of integrating machine learning techniques into ethnographic practice.

Annals of Anthropological Practice is overseen by the National Association for the Practice of Anthropology (NAPA) within the American Anthropological Association. Thank you, NAPA, for publishing my article and thank you to all the unnamed editors and reviewers in the process.

Interdisciplinary Anthropology and Data Science Master’s Thesis: A Quick and Dirty Project Summary

This is a quick and dirty summary of my master’s practicum research project with Indicia Consulting over the summer of 2018. For anyone interested in more detail, here is a more detailed report, and here is the final report with Indicia. 

Background

My practicum was the sixth stage of a several year-long research project. The California Energy Commission commissioned this larger project to understand the potential relationship between individual energy consumption and technology usage. In stages one through five, we isolated certain clusters of behavior and attitudes around new technology adoption – which Indicia called cybersensitivity – and demonstrated that cybersensitivity tended to associate with a willingness to adopt energy-saving technology like smart meters.

This led to a key question: How can one identify cybersensivity among a broader population such as a community, county, or state? Answering this question was the main goal of my practicum project.

In the past stages of the research project, the team used ethnographic research to establish criteria for whether someone was a cybersensitive based on several hours of interviews and observations about their technology usage. These interviews and observations certainly helped the research team analyze behavioral and attitudinal patterns, determine what patterns were significant, and develop those into the concept of cybersensitivity, but they are too time- and resource-intensive to perform with an entire population. One generally does not have the ability to interview everyone in a community, county, or state. I sought to address this directly in my project.

TaskTimelineTask NameResearch TechniqueDescription
Task 1June 2015-Sept 2018General Project TasksAdministrative (N/A)Developed project scope and timeline, adjusting as the project unfolds
Task 2July 2015 – July 2016Documenting and analyzing emerging attitudes, emotions, experiences, habits, and practices around technology adoptionSurveyConducted survey research to observe patterns of attitudes and behaviors among cybersensitives/awares.
Task 3Sept 2016 – Dec 2016Identifying the attributes and characteristics and psychological drivers of cybersensitivesInterviews and Participant-ObservationConducted in-depth interviews and observations coding for psych factor, energy consumption attitudes and behaviors, and technological device purchasing/usage.
Task 4*Sept 2016 – July 2017Assessing cybersensitives’ valence with technologyStatistical AnalysisTested for statistically significant differences in demographics, behaviors, and beliefs/attitudes between cyber status groups
Task 5Aug 2017 – Dec 2018  Developing critical insights for supporting residential engagement in energy efficient behaviorsStatistical AnalysisAnalyzed utility data patterns of study participants, comparing it with the general population.
Task 6March 2018 – Aug 2018Recommending an alternative energy efficiency potential modelDecision Tree ModelingConstructed decision tree models to classify an individual’s cyber status

Project Goal

The overall goal for the project was to produce a scalable method to assess whether someone exhibits cybersensitivity based on data measurable across an entire population. In doing this, the project also helped address the following research needs:

  1. Created a method to further to scale across a larger population, assessing whether cybersensitives were more willing to adopt energy saving technologies across a community, county, or state
  2. Provided the infrastructure to determine how much promoting energy-saving campaigns targeting cybersensitives specifically would reduce energy consumption in California
  3. Helped the California Energy Commission determine the best means to reach cybersensitives for specific energy-saving campaigns

The Project

I used machine learning modeling to create a decision-making flow to isolate cybersensitives in a population. Random forests and decision trees produced the best models for Indicia’s needs: random forests in accuracy and robustness and decision trees in human decipherability. Through them, I created a programmable yet human-comprehensible framework to determine whether an individual is cybersensitive based on behaviors and other characteristics that an organization could be easily assess within a whole population. Thus, any energy organization could easily understand, replicate, and further develop the model since it was both easy for humans to read and encodable computationally. This way organizations could both use and refine it for their purposes.

Conclusion

This is a quick overview of my master’s practicum project. For more details on what modeling I did, how I did it, what results it produced, and how it fit within the wider needs of the multi-year research project, please see my full report.

I really appreciated the opportunity it posed to get my hands dirty integrating ethnography and data science to help address a real-world problem. This summary only scratches the surface of what Indicia did with the Californian Energy Commission to encourage sustainable energy usage societally. Hopefully, though, it will inspire you to integrate ethnography and data science to address whatever complex questions you face. It certainly did for me.

Thank you to Susan Mazur-Stommen and Haley Gilbert for your help in organizing and completing the project. I would like to thank my professorial committee at the University of Memphis – Dr. Keri Brondo, Dr. Ted Maclin, Dr. Deepak Venugopal, and Dr. Katherine Hicks – for their academic support as well.

Anthropology by Data Science: The EPIC Project with Indicia Consulting as an Exploratory Case Study

This is my practicum report with Indicia Consulting. In lieu of a master’s thesis, the University of Memphis Department of Anthropology required that we master’s students conduct a practicum project. For this, we had to partner with an organization and complete a 300+ hour anthropological research project based on the organization’s needs and our skills and interests. My practicum project was Indicia’s EPIC Project with the California Energy Commission (see this link and this link for more details on the EPIC Project). In this report, I outline potential ways to integrate ethnographic/anthropological and data science research in professional settings.

In November 2019, the American Anthropological Association’s Committee for the Anthropology of Science, Technology, and Computing (CASTAC) awarded me the David Hakken Graduate Student Prize for innovative science and technology scholarship.

Full Report:

Loader Loading…
EAD Logo Taking too long?

Reload Reload document
| Open Open in new tab

Download [1.56 MB]

The Anthropology Department also required that you publicly present your practicum research to the University of Memphis campus. This PowerPoint summarizes my practicum project. If you are not keen to read the 99 page full report, this is a much shorter alternative:

If you are interested in learning more about the project, please check out the following:

  1. Indicia Consulting’s Final Research Report with the California Energy Commission
  2. My Presentation at the 2019 Memphis Data Conference for Data Scientists Specifically

Applied Anthropology Conference Presentation: Integrating Anthropology and Data Science

On July 8th, 2021, I presented virtually at the Congress of Anthropologists and Ethnologists of Russia in Tomsk, Siberia, organized by Association of Anthropologists and Ethnologists of Russia. My talk was titled “Integrating Anthropology and Data Science,” which I presented as part of its subcommittee for applied and business anthropology. I discussed the unique opportunities integrating data science could provide anthropologists and potential strategies for how to integrate the two disciplines.

Here was my original abstract for the conference:

Here is my full presentation:

I had a great time, and I hope you enjoy it as well.